zoukankan      html  css  js  c++  java
  • [Functional Programming] From simple implementation to Currying to Partial Application

    Let's say we want to write a most simple implementation 'avg' function:

    const avg = list => {
        let sum = 0;
        for(let i = 0; i < list.length; i++) {
            sum += list[i]
        }
        return sum / list.length
    }

    Basiclly, the 'avg' function doing two things:

    • Calculate sum
    • Divide sum / length

    It works fine for tiny / small application, but for the large application, we need to think about reuseablitiy. We want to breakdown one function and think about any reuseable partten, which later can be reused.

    In the following examples, We want to bring in two libarays which are commonly used in FP. One is Ramda, another one is Crocks.

    Currying:

    First, we want to write 'sum' and 'devide' functions by ourselves:

    const { curry, reduce, compose } = require("crocks");
    const R = require("ramda");
    
    const sum = reduce(R.add, 0);
    // divideByLen :: [Number] -> Number -> Number
    const divideByLen = curry(
      compose(
        R.flip(R.divide),
        R.length
      )
    );

    'sum' is simple, using 'reduce' from Crocks, you can also write JS reduce, doesn't matter.

    What we need to explain is 'divideByLen' function. 

    • Why 'curry'?

    Basic we want to call divideByLen in two ways:

    divideByLen([1,2,3], sum([1,2,3]))
    divideByLen([1,2,3])(sum([1,2,3]))

    [Notice] You need to bring in 'curry' from Crocks, it is more flexable. 

    • Why 'flip'?

    Because R.divide(sum, length), we need to feed the divide function with sum as first argement, then length as second arguement. But when we write code, length will be feeded frist, sum will be partially applied, it will come second, therefore we need to call 'flip'.

    Bring all together:

    const avg = list =>
      compose(
        divideByLen(list),
        sum
      )(list);

    We notice that, we have to pass 'list' to both Sum(list) and divideByLen(list). The code looks not so good. Whenever you are facing the situation, you need to pass the same arguement to two functions in parallel. You can consider to using 'Partial Application'.

    Partial Application:

    // Ramda

    const avg = R.converge(R.divide, [R.sum, R.length]);

    We are using 'Ramda's converge' function, bascilly you have pass in a data, the data will be passed to R.sum(data) & R.length(data), the return results of those two functions, will be passed to R.divide(resOfSum, resOfLength). 

    //Crocks:

    const { curry, fanout, merge, compose } = require("crocks");
    
    const avg = compose(
      merge(R.divide),
      fanout(R.sum, R.length)
    );

    We are using the Pair ADT, the data will be passed to R.sum(data) & R.length(data) thought 'fanout' function, it returns Pair(resOfSum, resOfLength).

    Then we use 'merge', it works with Pair ADT, we merge two results by R.divide(resOfSum, resOfLength).

  • 相关阅读:
    linux清理缓存
    HTMl5的sessionStorage和localStorage
    jQueryValidation插件API 学习
    notepad++去空格空行技巧
    关于前端的一些疑问
    ios上传图片遇见了一个TimeoutError(DOM Exception 23)异常
    js不执行的问题
    input type=file 怎么样调取用户手机照相机
    在调用方法给安卓传参遇到的问题
    canvas压缩图片成base64,传到后台解码需要注意的问题
  • 原文地址:https://www.cnblogs.com/Answer1215/p/10753304.html
Copyright © 2011-2022 走看看