zoukankan      html  css  js  c++  java
  • [Python] Statistical analysis of time series

    Global Statistics:

    Common seen methods as such

    1. Mean

    2. Median

    3. Standard deviation:  the larger the number means it various a lot.

    4. Sum.

    Rolling Statistics:

    It use a time window, moving forward each day to calculate the mean value of those window periods.

    To find which day is good to buy which day is good for sell, we can use Bollinger bands.

    Bollinger bands:

    import os
    import pandas as pd
    import matplotlib.pyplot as plt
    
    def test_run():
        start_date='2017-01-01'
        end_data='2017-12-15'
        dates=pd.date_range(start_date, end_data)
    
        # Create an empty data frame
        df=pd.DataFrame(index=dates)
    
        symbols=['SPY', 'AAPL', 'IBM', 'GOOG', 'GLD']
        for symbol in symbols:
            temp=getAdjCloseForSymbol(symbol)
            df=df.join(temp, how='inner')
    
        return df  
    
    if __name__ == '__main__':
        df=test_run()
        # data=data.ix['2017-12-01':'2017-12-15', ['IBM', 'GOOG']]    
        # df=normalize_data(df)
        ax = df['SPY'].plot(title="SPY rolling mean", label='SPY')
        rm = df['SPY'].rolling(20).mean()
        rm.plot(label='Rolling mean', ax=ax) 
        ax.set_xlabel('Date')
        ax.set_ylabel('Price')
        ax.legend(loc="upper left")
        plt.show()


    Now we can calculate Bollinger bands, it is 2 times std value.

    """Bollinger Bands."""
    
    import os
    import pandas as pd
    import matplotlib.pyplot as plt
    
    def symbol_to_path(symbol, base_dir="data"):
        """Return CSV file path given ticker symbol."""
        return os.path.join(base_dir, "{}.csv".format(str(symbol)))
    
    
    def get_data(symbols, dates):
        """Read stock data (adjusted close) for given symbols from CSV files."""
        df = pd.DataFrame(index=dates)
        if 'SPY' not in symbols:  # add SPY for reference, if absent
            symbols.insert(0, 'SPY')
    
        for symbol in symbols:
            df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
                    parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
            df_temp = df_temp.rename(columns={'Adj Close': symbol})
            df = df.join(df_temp)
            if symbol == 'SPY':  # drop dates SPY did not trade
                df = df.dropna(subset=["SPY"])
    
        return df
    
    
    def plot_data(df, title="Stock prices"):
        """Plot stock prices with a custom title and meaningful axis labels."""
        ax = df.plot(title=title, fontsize=12)
        ax.set_xlabel("Date")
        ax.set_ylabel("Price")
        plt.show()
    
    
    def get_rolling_mean(values, window):
        """Return rolling mean of given values, using specified window size."""
        return values.rolling(window=window).mean()
    
    
    def get_rolling_std(values, window):
        """Return rolling standard deviation of given values, using specified window size."""
        # TODO: Compute and return rolling standard deviation
        return values.rolling(window=window).std()
    
    
    def get_bollinger_bands(rm, rstd):
        """Return upper and lower Bollinger Bands."""
        # TODO: Compute upper_band and lower_band
        upper_band = rstd * 2 + rm
        lower_band =  rm - rstd * 2
        return upper_band, lower_band
    
    
    def test_run():
        # Read data
        dates = pd.date_range('2012-01-01', '2012-12-31')
        symbols = ['SPY']
        df = get_data(symbols, dates)
    
        # Compute Bollinger Bands
        # 1. Compute rolling mean
        rm_SPY = get_rolling_mean(df['SPY'], window=20)
    
        # 2. Compute rolling standard deviation
        rstd_SPY = get_rolling_std(df['SPY'], window=20)
    
        # 3. Compute upper and lower bands
        upper_band, lower_band = get_bollinger_bands(rm_SPY, rstd_SPY)
        
        # Plot raw SPY values, rolling mean and Bollinger Bands
        ax = df['SPY'].plot(title="Bollinger Bands", label='SPY')
        rm_SPY.plot(label='Rolling mean', ax=ax)
        upper_band.plot(label='upper band', ax=ax)
        lower_band.plot(label='lower band', ax=ax)
    
        # Add axis labels and legend
        ax.set_xlabel("Date")
        ax.set_ylabel("Price")
        ax.legend(loc='upper left')
        plt.show()
    
    
    if __name__ == "__main__":
        test_run()

    Daily return:

    Subtract the previous day's closing price from the most recent day's closing price. In this example, subtract $35.50 from $36.75 to get $1.25. Divide your Step 4 result by the previous day's closing price to calculate the daily return. Multiply this result by 100 to convert it to a percentage.

    """Compute daily returns."""
    
    import os
    import pandas as pd
    import matplotlib.pyplot as plt
    
    def symbol_to_path(symbol, base_dir="data"):
        """Return CSV file path given ticker symbol."""
        return os.path.join(base_dir, "{}.csv".format(str(symbol)))
    
    
    def get_data(symbols, dates):
        """Read stock data (adjusted close) for given symbols from CSV files."""
        df = pd.DataFrame(index=dates)
        if 'SPY' not in symbols:  # add SPY for reference, if absent
            symbols.insert(0, 'SPY')
    
        for symbol in symbols:
            df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date',
                    parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan'])
            df_temp = df_temp.rename(columns={'Adj Close': symbol})
            df = df.join(df_temp)
            if symbol == 'SPY':  # drop dates SPY did not trade
                df = df.dropna(subset=["SPY"])
    
        return df
    
    
    def plot_data(df, title="Stock prices", xlabel="Date", ylabel="Price"):
        """Plot stock prices with a custom title and meaningful axis labels."""
        ax = df.plot(title=title, fontsize=12)
        ax.set_xlabel(xlabel)
        ax.set_ylabel(ylabel)
        plt.show()
    
    
    def compute_daily_returns(df):
        """Compute and return the daily return values."""
        # TODO: Your code here
        # Note: Returned DataFrame must have the same number of rows
        return df / df.shift(-1) -1
    
    
    def test_run():
        # Read data
        dates = pd.date_range('2012-07-01', '2012-07-31')  # one month only
        symbols = ['SPY','XOM']
        df = get_data(symbols, dates)
        plot_data(df)
    
        # Compute daily returns
        daily_returns = compute_daily_returns(df)
        plot_data(daily_returns, title="Daily returns", ylabel="Daily returns")
    
    
    if __name__ == "__main__":
        test_run()

    Cumulative return:

    an investment relative to the principal amount invested over a specified amount of time. ... To calculate cumulative return, subtract the original price of the investment from the current price and divide that difference by the original price.

  • 相关阅读:
    【译】StackExchange.Redis 中文文档(十)性能分析
    【译】StackExchange.Redis 中文文档(九)服务器相关命令
    【译】StackExchange.Redis 中文文档(八)流
    【译】StackExchange.Redis 中文文档(七)推送/订阅消息顺序
    【译】StackExchange.Redis 中文文档(六)事件
    【译】StackExchange.Redis 中文文档(五)事务
    查看供应商2086报表
    创建内部供应商
    创建客户前台配置
    创建客户后台配置-spro
  • 原文地址:https://www.cnblogs.com/Answer1215/p/8082560.html
Copyright © 2011-2022 走看看