A - STring
用一个栈模拟即可。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } const int N = 2e5 + 10; char str[N], stk[N]; int n, tp; int main() { scanf("%s", str + 1); n = strlen(str + 1); for (int i = 1; i <= n; ++i) { if (tp > 0 && stk[tp] == 'S' && str[i] == 'T') --tp; else stk[++tp] = str[i]; } printf("%d ", tp); return 0; }
B - Minimum Sum
分治一下,计算一个数作为最小值的贡献。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } const int N = 2e5 + 10; int a[N]; long long ans; void solve(int l, int r) { if (l == r) { ans += a[l]; return; } long long res = 0; int mid = (l + r) >> 1; vector<int> L, R; for (int i = mid; i >= l; --i) { if (!SZ(L) || a[L[SZ(L) - 1]] > a[i]) L.pb(i); } for (int i = mid + 1; i <= r; ++i) { if (!SZ(R) || a[R[SZ(R) - 1]] > a[i]) R.pb(i); } L.pb(l - 1); R.pb(r + 1); for (int i = 0, j = 0; i < SZ(L) - 1; ++i) { while (a[R[j]] > a[L[i]] && j < SZ(R) - 1) ++j; res += 1LL * (R[j] - mid - 1) * (L[i] - L[i + 1]) * a[L[i]]; } for (int i = 0, j = 0; i < SZ(R) - 1; ++i) { while (a[R[i]] < a[L[j]] && j < SZ(L) - 1) ++j; res += 1LL * (mid - L[j]) * (R[i + 1] - R[i]) * a[R[i]]; } ans += res; solve(l, mid); solve(mid + 1, r); } int n; int main() { gi(n); for (int i = 1; i <= n; ++i) gi(a[i]); solve(1, n); printf("%lld ", ans); return 0; }
C - Tree Restoring
先把直径找出来,其它的挂在直径上就好了。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } int n, a[110]; int main() { gi(n); for (int i = n; i; --i) gi(a[i]); sort(a + 1, a + n + 1); reverse(a + 1, a + n + 1); int len = a[1]; int mn = len / 2 + 1; for (int i = len; i > len / 2; --i) { int cnt = 0; for (int j = 1; j <= n; ++j) { if (a[j] == i) ++cnt, a[j] = 0; if (cnt == 2) break; } if (cnt < 2) { puts("Impossible"); return 0; } } if (!(len & 1)) { mn = len / 2; int cnt = 0; for (int j = 1; j <= n; ++j) { if (a[j] == (len >> 1)) ++cnt, a[j] = 0; if (cnt == 1) break; } if (cnt < 1) { puts("Impossible"); return 0; } } for (int i = 1; i <= n; ++i) if (a[i] && a[i] <= mn) { puts("Impossible"); return 0; } puts("Possible"); return 0; }
D - ~K Perm Counting
我们发现可以放置的可以画出一个二分图,然后容斥一下就好了。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } const int mod = 924844033; int f[2010][2010][2], g[2010], t[2010], ans; int main() { int n, k; gii(n, k); f[0][0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 0; j <= n; ++j) { f[i][j][0] = (f[i][j][0] + f[i - 1][j][0]) % mod; f[i][j][0] = (f[i][j][0] + f[i - 1][j][1]) % mod; if (j) f[i][j][1] = f[i - 1][j - 1][0]; } } g[0] = 1; for (int i = 1; i <= k; ++i) { int len = (n - i) / k; for (int i = 0; i <= n; ++i) t[i] = g[i], g[i] = 0; for (int j = 0; j <= len; ++j) for (int l = 0; l <= n - j; ++l) g[j + l] = (g[j + l] + 1LL * t[l] * (f[len][j][0] + f[len][j][1])) % mod; for (int i = 0; i <= n; ++i) t[i] = g[i], g[i] = 0; for (int j = 0; j <= len; ++j) for (int l = 0; l <= n - j; ++l) g[j + l] = (g[j + l] + 1LL * t[l] * (f[len][j][0] + f[len][j][1])) % mod; } for (int i = n, fac = 1, j = (n & 1) ^ 1; ~i; --i, fac = 1LL * fac * (n - i) % mod, j ^= 1) { if (j) ans = (ans + 1LL * g[i] * fac) % mod; else ans = (ans - 1LL * g[i] * fac) % mod; } if (ans < 0) ans += mod; printf("%d ", ans); return 0; }
E - Sugigma: The Showdown
如果有一条A中的边在B中长度大于2,只要A走到肯定赢,A能走到的点就是A要在B之前走到,算一下就好了。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } const int N = 2e5 + 10; int n; VI A[N], B[N]; int fa[N], in[N], out[N], dep[N], dfs_clock; void dfsB(int u) { in[u] = ++dfs_clock; for (auto v : B[u]) { if (v == fa[u]) continue; fa[v] = u; dep[v] = dep[u] + 1; dfsB(v); } out[u] = dfs_clock; } bool check(int u, int v) { if (in[u] <= in[v] && in[v] <= out[u]) { if (fa[v] == u) return 1; if (fa[fa[v]] == u) return 1; return 0; } if (in[v] <= in[u] && in[u] <= out[v]) { if (fa[u] == v) return 1; if (fa[fa[u]] == v) return 1; return 0; } if (fa[u] == fa[v]) return 1; return 0; } bool vis[N]; int d[N]; void bfsA(int s) { static int q[N]; int l = 0, r = 0; q[r++] = s; vis[s] = 1; while (l < r) { int u = q[l++]; for (auto v : A[u]) { if (vis[v]) continue; d[v] = d[u] + 1; if (d[v] < dep[v] && !vis[v]) { vis[v] = 1; q[r++] = v; } } } } int rootA, rootB; bool win[N]; int main() { giii(n, rootA, rootB); for (int i = 1; i < n; ++i) { int u, v; gii(u, v); A[u].pb(v); A[v].pb(u); } for (int i = 1; i < n; ++i) { int u, v; gii(u, v); B[u].pb(v); B[v].pb(u); } dfsB(rootB); for (int i = 1; i <= n; ++i) { for (auto j : A[i]) if (!check(i, j)) win[i] = win[j] = 1; } bfsA(rootA); int ans = 0; for (int i = 1; i <= n; ++i) { if (vis[i] && win[i]) { puts("-1"); return 0; } if (vis[i]) ans = max(ans, dep[i] * 2); } printf("%d ", ans); return 0; }
F - Many Easy Problems
分开算每个点贡献,可以用容斥做,最后发现这个式子是一个卷积。NTT一下就好了。
//waz #include <bits/stdc++.h> using namespace std; #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)((x).size())) typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned int uint; typedef unsigned long long uint64; #define gi(x) ((x) = F()) #define gii(x, y) (gi(x), gi(y)) #define giii(x, y, z) (gii(x, y), gi(z)) int F() { char ch; int x, a; while (ch = getchar(), (ch < '0' || ch > '9') && ch != '-'); if (ch == '-') ch = getchar(), a = -1; else a = 1; x = ch - '0'; while (ch = getchar(), ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + ch - '0'; return a * x; } const int N = 1 << 20; const int mod = 924844033; const int g = 5; int fpow(int a, int x) { int ret = 1; for (; x; x >>= 1) { if (x & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; } return ret; } int n; vector<int> edge[N]; int cnt[N], siz[N], fac[N], ifac[N]; int C(int n, int m) { if (n < m || m < 0) return 0; return 1LL * fac[n] * ifac[n - m] % mod * ifac[m] % mod; } void dfs(int u, int fa) { siz[u] = 1; for (auto v : edge[u]) { if (v == fa) continue; dfs(v, u); siz[u] += siz[v]; } for (auto v : edge[u]) { if (v == fa) { ++cnt[n - siz[u]]; continue; } ++cnt[siz[v]]; } } void dft(int *a, int n, int sig) { for (int i = 0, j = 0; i < n; ++i) { if (i > j) swap(a[i], a[j]); for (int l = n >> 1; (j ^= l) < l; l >>= 1); } for (int i = 1; i < n; i <<= 1) { int m = i << 1; int w = fpow(g, (mod - 1) / m); if (sig == -1) w = fpow(w, mod - 2); for (int j = 0; j < n; j += m) { int v = 1; for (int k = j; k < j + i; ++k, v = 1LL * v * w % mod) { int x = a[k], y = 1LL * a[k + i] * v % mod; a[k] = (x + y) % mod; a[k + i] = (x - y + mod) % mod; } } } if (sig == -1) { int invn = fpow(n, mod - 2); for (int i = 0; i < n; ++i) a[i] = 1LL * a[i] * invn % mod; } } int main() { gi(n); for (int i = 1; i < n; ++i) { int u, v; gii(u, v); edge[u].pb(v); edge[v].pb(u); } dfs(1, 0); fac[0] = 1; for (int i = 1; i <= n; ++i) fac[i] = 1LL * fac[i - 1] * i % mod; ifac[n] = fpow(fac[n], mod - 2); for (int i = n; i; --i) ifac[i - 1] = 1LL * ifac[i] * i % mod; static int f[N], g[N]; for (int i = 0; i <= n; ++i) g[i] = ifac[n - i]; for (int i = 0; i <= n; ++i) f[i] = 1LL * cnt[i] * fac[i] % mod; int m = 1; for (; m <= (n << 1); m <<= 1); dft(f, m, 1), dft(g, m, 1); for (int i = 0; i < m; ++i) f[i] = 1LL * f[i] * g[i] % mod; dft(f, m, -1); for (int k = 1; k <= n; ++k) { int ans = n; ans = 1LL * ans * C(n, k) % mod; ans = (ans - 1LL * ifac[k] * f[n + k]) % mod; if (ans < 0) ans += mod; printf("%d ", ans); } return 0; }