zoukankan      html  css  js  c++  java
  • 多项式版子汇总(continue)

    多项式全集

    Code

    #pragma GCC optimize(2, "inline", "Ofast")
    #include <bits/stdc++.h>
    using namespace std;
    const int N = 5e5 + 500;
    const int Md = 998244353;
    typedef long long ll;
    typedef vector<int> Vec;
    
    namespace {
      inline int Add(const int &x, const int &y) {return (x + y >= Md) ? (x + y - Md) : (x + y);}
      inline int Sub(const int &x, const int &y) {return (x - y < 0) ? (x - y + Md) :(x - y);}
      inline int Mul(const int &x, const int &y) {return (ll)x * y % Md;}
      int Powe(int x, int y) {
        int ans = 1;
        while(y) {
          if(y & 1) ans = Mul(ans, x);
          x = Mul(x, x);
          y >>= 1;
        }
        return ans;
      }
    }
    
    void read(int &x) {
      x = 0; int f = 1; char ch = getchar();
      while(ch > '9' || ch < '0') {if(ch == '-') f = -1; ch = getchar();}
      while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + ch - '0'; ch = getchar();}
      x *= f;
    }
    
    int n, m, a, b;
    
    namespace Poly {
      int rev[N << 2 | 1], inv[N];
      int Iv2;
      void Init() {
        inv[0]=0; inv[1]=1;
        for(int i = 2; i < N; i++) {
          inv[i] = ((ll)(Md - Md / i) * inv[Md % i]) % Md;
        }
        Iv2 = Powe(2, Md - 2);
      }
    
      void DFT(Vec &A, int len) {
        for(int i = 0; i < len; i++) if(i < rev[i]) swap(A[i], A[rev[i]]);
        for(int i = 1; i < len; i <<= 1) {
          int wn = Powe(3, (Md - 1) / (i << 1));
          for(int j = 0; j < len; j += i << 1) {
              int nw = 1, x, y;
              for(int k = 0; k < i; k++, nw = Mul(nw, wn)) {
                x = A[j + k], y = Mul(nw, A[i + j + k]);
                A[j + k] = Add(x, y); A[i + j + k] = Sub(x, y); 
              }
          }
        }
      }
    
      void IDFT(Vec &A, int len) {
        reverse(A.begin() + 1, A.end());
        int Iv = Powe(len, Md - 2);
        DFT(A, len);
        for(int i = 0; i < len; i++) A[i] = Mul(A[i], Iv);
      }
    
      Vec MUL(Vec A, Vec B) {
        int n = A.size(), m = B.size(), len;
        for(len = 1; len < n + m - 1; len <<= 1);
        A.resize(len), B.resize(len); 
        for(int i = 0; i < len; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) ? len >> 1 : 0);
        DFT(A, len), DFT(B, len);
        for(int i = 0; i < len; i++) A[i] = Mul(A[i], B[i]);
        IDFT(A, len);
        A.resize(n + m - 1);
        return A;
      }
    
      Vec GetInv(Vec A, int len) {
        Vec C, B(1, Powe(A[0], Md - 2));
        for(int i = 2; (i >> 1) < len; i <<= 1) {
          for(int j = 0; j < (i << 1); j++) rev[j] = (rev[j >> 1] >> 1) | ((j & 1) ? i : 0);
          C = A; C.resize(i);
          C.resize(i << 1); DFT(C, i << 1);
          B.resize(i << 1); DFT(B, i << 1);
          for(int j = 0; j < (i << 1); j++) B[j] = Mul(B[j], Sub(2, Mul(C[j], B[j])));
          IDFT(B, i << 1);
          B.resize(i);
        }
        B.resize(len);
        return B;
      }
    
      void GetDiv(Vec A, Vec B, Vec &Q, Vec &R) {
        Q.resize(n + 1); Vec Gr; Gr.clear(); Gr.resize(m + 1);
        for(int i = 0; i <= n; i++) Q[i] = A[n - i];
        for(int i = 0; i <= m; i++) Gr[i] = B[m - i];
        for(int i = n - m + 2; i <= m; i++) Gr[i] = 0;
        Vec Iv; Iv.clear();
        Gr.resize(n - m + 1); Iv.resize(n - m + 1);
        Iv = GetInv(Gr, n - m + 1);
        Q = MUL(Q, Iv);
        Q.resize(n - m + 1);
        reverse(Q.begin(), Q.end());
        for(int i = n - m + 1; i <= n; i++) Q[i] = 0;
        R = MUL(Q, B);
        for(int i = 0; i <= m - 1; i++) R[i] = Add(A[i], Sub(Md, R[i]));
      }
    
      Vec Dir(Vec A) {
        Vec B = A; int len = A.size(); B.resize(len);
        for(int i = 1; i < len; i++) B[i - 1] = Mul(A[i], i);
        B[len - 1] = 0;
        return B;
      }
    
      Vec Inter(Vec A) {
        Vec B = A; int len = A.size(); B.resize(len);
        for(int i = 1; i < len; i++) B[i] = Mul(A[i - 1], inv[i]);
        B[0] = 0;
        return B;
      }
    
      Vec Ln(Vec A, int len) {
        A = Inter(MUL(Dir(A), GetInv(A, len)));
        A.resize(len);
        return A;
      }
    
      Vec Exp(Vec A, int len) {
        Vec B(1, 1), F;
        for(int i = 2; (i >> 1) < len; i <<= 1) {
          if((int)A.size() < i) A.resize(i);
          F = Ln(B, i);
          for(int j = 0; j < i; j++) F[j] = Sub(A[j], F[j]);
          F[0] = Add(F[0], 1);
          B = MUL(B, F);
          B.resize(i);
        }
        B.resize(len);
        return B;
      }
    
      Vec Powe(Vec A, int len, int k) {
        k %= Md;
        int x = ::Powe(A[0], Md - 2);
        int y = ::Powe(A[0], k);
        Vec B = A;
        for(int i = 0; i < len; i++) B[i] = Mul(B[i], x);
        B = Ln(B, len);
        for(int i = 0; i < len; i++) B[i] = Mul(B[i], k);
        B = Exp(B, len);
        for(int i = 0; i < len; i++) B[i] = Mul(B[i], y);
        return B;
      }
    
      Vec Sqrt(Vec A, int len) {
        assert(A[0] == 4);
        Vec C, D, B(1, 2);
        for (int i = 2; (i >> 1) < len; i <<= 1) {
          C = A, C.resize(i);
          D = GetInv(B, i);
          C = MUL(C, D);
          B.resize(i);
          for (int j = 0; j < i; j++) B[j] = Mul(Add(C[j], B[j]), Iv2);
        }
        B.resize(len);
        return B;
      }
    }
    
    int main() {
      Poly::Init();
      
      return 0;
    }
    
  • 相关阅读:
    CEAA自动汇编脚本常用命令
    PIC之拉电流和灌电流
    CHARRANGE 结构
    汇编中的lodsb和stosb、lodsd和stosd指令
    汇编中的STOSB与STOSD指令
    汇编中的CLD指令
    SQL中distinct的用法
    SQL union介绍
    【项目排期】测试排期问题思考
    SQL join的介绍
  • 原文地址:https://www.cnblogs.com/Apocrypha/p/10279531.html
Copyright © 2011-2022 走看看