题意:给出n个区间li, ri, ci,求一个集合,表示在区间li到ri之间至少要有ci个元素在集合中。
解法:差分约束系统。解法大概跟POJ1716一样,就是数据量看着比较大……最后写了个spfa……用的小红书模板……那个模板有点坑……必须反着建边……
代码:
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
#include<string.h>
#include<math.h>
#include<limits.h>
#include<time.h>
#include<stdlib.h>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#include<iomanip>
#define LL long long
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
const int maxn = 50010;
int n, m, src;
vector <pair<int, int> > g[maxn];
int dist[maxn];
bool inQue[maxn];
queue <int> que;
void spfa()
{
memset(dist, 63, sizeof(dist));
dist[src] = 0;
while(!que.empty()) que.pop();
que.push(src);
inQue[src] = true;
while(!que.empty())
{
int u = que.front();
que.pop();
for(int i = 0; i < g[u].size(); i++)
if(dist[u] + g[u][i].second < dist[g[u][i].first])
{
dist[g[u][i].first] = dist[u] + g[u][i].second;
if(!inQue[g[u][i].first])
{
inQue[g[u][i].first] = true;
que.push(g[u][i].first);
}
}
inQue[u] = false;
}
}
int main()
{
while(~scanf("%d", &n))
{
src = maxn - 1;
int mn = 0;
for(int i = 0; i < maxn; i++) g[i].clear();
for(int i = 0; i < n; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a].push_back(make_pair(b + 1, -c));
src = min(src, a);
mn = max(mn, b + 1);
}
for(int i = src + 1; i <= mn; i++)
{
g[i - 1].push_back(make_pair(i, 0));
g[i].push_back(make_pair(i - 1, 1));
}
spfa();
cout << dist[src] - dist[mn] << endl;
}
return 0;
}