F(x)
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3530 Accepted Submission(s): 1317
Problem Description
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
For each test case, there are two numbers A and B (0 <= A,B < 109)
题意:找出i在0到b之间的f(i)小于等于f(a)的数的个数。
思路:数位dp。主要在于状态转移不好想。dp[i][j]表示i位数比j小的数的个数。用递归完成的话就只需要思考边界和状态转移。
边界:
dp[i][j]如果j小于0,显然是dp[i][j]=0的,如果i==0,说明就是0,显然任何数都比0大,所以dp[i][j]对于j>=0的时候dp[i][j]=1,否则dp[i][j]=0。
状态转移:
dp[i][j]+=dp[i-1][j-k*(1<<(i-1))];
记忆化:
#include <iostream> #include <stdio.h> #include <stdlib.h> #include<string.h> #include<algorithm> #include<math.h> #include<queue> #include<stack> using namespace std; typedef long long ll; int dp[20][9300]; int digit[20]; int dfs(int pos,int st,bool limit) { if(pos==0)return st>=0; if(st<0)return 0; if(!limit&&dp[pos][st]!=-1)return dp[pos][st]; int ans=0; int end=limit?digit[pos]:9; for(int i=0; i<=end; i++) ans+=dfs(pos-1,st-i*(1<<(pos-1)),limit&&(i==end)); if(!limit) dp[pos][st]=ans; return ans; } int f(int x) { int ans=0; int i=0; while(x) ans+=(x%10)*(1<<(i++)),x/=10; return ans; } int get(int a,int b) { int bj=0; while(b) digit[++bj]=b%10,b/=10; return dfs(bj,f(a),1); } int main() { int t,o=1; memset(dp,-1,sizeof(dp)); scanf("%d",&t); while(t--) { int a,b; scanf("%d%d",&a,&b); printf("Case #%d: %d ",o++,get(a,b)); } return 0; }
非记忆化:dp[i][j][k] 第i位为j小于k的数目
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define K ((1<<9)*9) using namespace std; int T, A, B, dp[9][10][K]; inline void init() { memset(dp, 0, sizeof(dp)); for(int j = 0; j < 10; ++j) for(int k = j; k < K; ++k) dp[0][j][k] = 1; for(int i = 1; i < 9; ++i) for(int j = 0; j < 10; ++j) for(int k = 0; k < K; ++k) for(int l = 0; l < 10 && (k-j*(1<<i)) >= 0; ++l) dp[i][j][k] += dp[i-1][l][k-j*(1<<i)]; } inline int f(int x) { int ret = 0, i = 1; while(x) { ret += x%10 * i; x /= 10; i <<= 1; } return ret; } inline int solve(int b, int x) { int w = 0, bb = b, a[20]; while(bb) { a[w++] = bb%10; bb /= 10; } int ret = 0; if(f(b) <= x) ret++; for(int i = w-1; i >= 0; --i) { for(int j = 0; j < a[i]; ++j) ret += dp[i][j][x]; x -= a[i]*(1<<i); if(x < 0) break; } return ret; } int main(int argc, char **argv) { init(); scanf("%d", &T); for(int cas = 1; cas <= T; ++cas) { scanf("%d%d", &A, &B); printf("Case #%d: %d ", cas, solve(B, f(A))); } return 0; }