Problem fzu 1759 Super A^B mod C calculation
http://acm.fzu.edu.cn/problem.php?pid=1759
其中和
#include <iostream> #include <string.h> #include <stdio.h> using namespace std; const int N=1000005; typedef long long LL; char str[N]; int phi(int n) { int rea = n; for(int i=2; i*i<=n; i++) { if(n % i == 0) { rea = rea - rea / i; while(n % i == 0) n /= i; } } if(n > 1) rea = rea - rea / n; return rea; } LL multi(LL a,LL b,LL m) { LL ans = 0; a %= m; while(b) { if(b & 1) { ans = (ans + a) % m; b--; } b >>= 1; a = (a + a) % m; } return ans; } LL quick_mod(LL a,LL b,LL m) { LL ans = 1; a %= m; while(b) { if(b & 1) { ans = multi(ans,a,m); b--; } b >>= 1; a = multi(a,a,m); } return ans; } void Solve(LL a,char str[],LL c) { LL len = strlen(str); LL ans = 0; LL p = phi(c); if(len <= 15) { for(int i=0; i<len; i++) ans = ans * 10 + str[i] - '0'; } else { for(int i=0; i<len; i++) { ans = ans * 10 + str[i] - '0'; ans %= p; } ans += p;//可加可不加? } printf("%I64d ",quick_mod(a,ans,c)); } int main() { LL a,c; while(~scanf("%I64d%s%I64d",&a,str,&c)) Solve(a,str,c); return 0; }
Problem hdu 2837 calculation
http://acm.hdu.edu.cn/showproblem.php?pid=2837
题意:给定一个递归式,其中,,求的值
分析:本题方法比较明确,先已一直递归上去,直到,然后从上面再一步一步走回来,每一步都可以进行指数降幂,这里需要判断。
#include <iostream> #include <string.h> #include <stdio.h> #include <math.h> using namespace std; typedef long long LL; int phi(int n) { int rea = n; for(int i=2; i*i<=n; i++) { if(n % i == 0) { rea = rea - rea / i; while(n % i == 0) n /= i; } } if(n > 1) rea = rea - rea / n; return rea; } LL quick_mod(LL a,LL b,LL m) { LL ans = 1; a %= m; while(b) { if(b & 1) { ans = ans * a % m; b--; } b >>= 1; a = a * a % m; } return ans; } LL check(LL a,LL b,LL p) { LL ans = 1; for(int i=1; i<=b; i++) { ans *= a; if(ans >= p) return ans; } return ans; } LL dfs(LL n,LL m) { LL p = phi(m); if(n < 10) return n; LL x = dfs(n / 10, p); LL y = check(n % 10, x, m); if(y >= m) { LL ans = quick_mod(n % 10, x + p, m); if(ans == 0) ans += m; return ans; } else return y; } int main() { int T; cin>>T; while(T--) { LL n,m; cin>>n>>m; cout<<dfs(n,m) % m<<endl; } return 0; }
Problem ZOJ 2674 Strange Limit
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1674
题意:已知,,,给定和,求的值,并且有条件
成立。
分析:本题方法很巧妙,由于。本题就要用到这个,设
那么有
可以看出又是的一个子问题,这样一直递归下去最终求得结果,因为,所以一定有解。
#include <iostream> #include <string.h> #include <stdio.h> #include <math.h> using namespace std; typedef long long LL; LL phi(LL n) { LL rea = n; LL t = (LL)sqrt(1.0*n); for(int i=2;i<=t;i++) { if(n % i == 0) { rea = rea - rea / i; while(n % i == 0) n /= i; } } if(n > 1) rea = rea - rea / n; return rea; } LL power(LL a,LL b,LL m) { LL ans = 1; a %= m; while(b) { if(b & 1) { ans = ans * a % m; b--; } b >>= 1; a = a * a % m; } return ans; } LL Solve(LL a,LL m) { if(m == 1) return 0; LL p = phi(m); return power(a,p,m) * power(a,Solve(a,p),m) % m; } int main() { LL a,m; bool f = 1; while(cin>>a>>m) { if(f) f = 0; else puts(""); LL ans = 1; for(int i=1;i<=m;i++) ans *= i; cout<<Solve(a,ans)%ans<<endl; } return 0; }
Problem hdu 4335 What is N ?
http://acm.hdu.edu.cn/showproblem.php?pid=4335
题意:给定3个整数,其中,和,求满足下面两个条件的
的个数。
分析:由,所以这样就容易多了,注意有个特判。
#include <iostream> #include <string.h> #include <stdio.h> using namespace std; typedef unsigned long long ULL; int phi(int n) { int rea = n; for(int i=2; i*i<=n; i++) { if(n % i == 0) { rea = rea - rea / i; while(n % i == 0) n /= i; } } if(n > 1) rea = rea - rea / n; return rea; } ULL quick_mod(ULL a,ULL b,ULL m) { ULL ans = 1; a %= m; while(b) { if(b & 1) { ans = ans * a % m; b--; } b >>= 1; a = a * a % m; } return ans; } ULL f[100005]; int main() { int T; scanf("%d", &T); for(int t=1; t<=T; t++) { ULL b, p, m; scanf("%I64u %I64u %I64u", &b, &p, &m); if(b == 0 && p == 1 && m == 18446744073709551615ull) { printf("Case #%d: 18446744073709551616 ",t); continue; } int ph = phi(p); ULL ans = 0; if(b == 0) ans++; f[0] = 1; bool flag = 0; int i; for(i=1; i<=m; i++) { f[i] = f[i-1] * i; if(f[i] >= ph) { f[i] %= ph; flag = 1; if(f[i] == 0) break; } if(flag) { if(quick_mod(i, f[i] + ph, p) == b) ans++; } else { if(quick_mod(i, f[i], p) == b) ans++; } } for(int k=0; i<=m && k<p; i++, k++) if(quick_mod(i, ph, p) == b) ans += 1 + (m - i) / p; printf("Case #%d: %I64u ", t, ans); } return 0; }