zoukankan      html  css  js  c++  java
  • Codeforces 934 最长不递减子序列 多项式系数推导

    A

    B

    C

    给你一个长度为N的01串 你可以翻转一次任意【L,R】的区间

    问你最长的不递减序列为多少长

    处理出1的前缀和 和2的后缀和

    然后N^2 DP 处理出 【L,R】区间的最长不递增序列

    #include <bits/stdc++.h>
    #define PI acos(-1.0)
    #define mem(a,b) memset((a),b,sizeof(a))
    #define TS printf("!!!
    ")
    #define pb push_back
    #define inf 1e9
    //std::ios::sync_with_stdio(false);
    using namespace std;
    //priority_queue<int,vector<int>,greater<int>> que; get min
    const double eps = 1.0e-10;
    const double EPS = 1.0e-4;
    typedef pair<int, int> pairint;
    typedef long long ll;
    typedef unsigned long long ull;
    const int turn[4][2] = {{1, 0}, { -1, 0}, {0, 1}, {0, -1}};
    //priority_queue<int, vector<int>, less<int>> que;
    //next_permutation
    const int MAXN = 2005;
    int a[2005];
    int pre[2005];
    int suf[2005];
    int dp[2005][2005][3];
    int ans = 0;
    int main()
    {
            ios::sync_with_stdio(false);
            cin.tie(0);
            int n;
            cin >> n;
            for (int i = 1; i <= n; i++)
            {
                    cin >> a[i];
            }
            for (int i = 1; i <= n; i++)
            {
                    pre[i] = pre[i - 1] + (a[i] == 1);
            }
            for (int i = n; i >= 1; i--)
            {
                    suf[i] = suf[i + 1] + (a[i] == 2);
            }
            for (int i = 1; i <= n; i++)
            {
                    ans = max(pre[i] + suf[i], ans);
            }
            //cout<<ans<<endl;
            for (int i = 1; i <= n; i++)
            {
                    for (int j = i; j <= n; j++)
                    {
                            dp[i][j][2] = dp[i][j - 1][2] + (a[j] == 2);
                            dp[i][j][1] = max(dp[i][j - 1][2], dp[i][j - 1][1]) + (a[j] == 1);
                            ans = max(ans, max(dp[i][j][2], dp[i][j][1]) + pre[i - 1] + suf[j + 1]);
                    }
            }
            cout << ans << endl;
    }
    View Code

    D

    找规律 

    考虑构造q(x).先让常数项小于k,也就是让相乘后的常数项+p小于k.

    q(x)的常数项就是p / (-k).这样会产生一次项,那么继续消一次项.直到最后的p = 0.

    #include <bits/stdc++.h>
    #define PI acos(-1.0)
    #define mem(a,b) memset((a),b,sizeof(a))
    #define TS printf("!!!
    ")
    #define pb push_back
    #define inf 1e9
    //std::ios::sync_with_stdio(false);
    using namespace std;
    //priority_queue<int,vector<int>,greater<int>> que; get min
    const double eps = 1.0e-10;
    const double EPS = 1.0e-4;
    typedef pair<int, int> pairint;
    typedef long long ll;
    typedef unsigned long long ull;
    //const int maxn = 3e5 + 10;
    const int turn[4][2] = {{1, 0}, { -1, 0}, {0, 1}, {0, -1}};
    //priority_queue<int, vector<int>, less<int>> que;
    //next_permutation
    ll Mod = 1000000007;
    int cnt;
    int ans[1000005];
    int main()
    {
            ll p;
            ll k;
            cin >> p >> k;
            ll flag = 0;
            while (p != 0)
            {
                    ans[++cnt] = p % k;
                    p = p / k * (-1);
                    if (flag)
                    {
                            p += flag;
                            flag = 0;
                    }
                    if (p < 0)
                    {
                            flag += (k - p) / k;
                            p += flag * k;;
                    }
            }
            cout << cnt << endl;
            for (int i = 1; i <= cnt; i++)
            {
                    cout << ans[i] << " ";
            }
            cout << endl;
            return 0;
    }
    View Code

     

  • 相关阅读:
    分页功能
    四个内置对象的作用范围
    include和application
    jsp中的session
    IDC机房的相关常识
    使用dm-cache组合SSD与HDD实现高性价比存储
    负载均衡基本原理与lvs
    秒级别执行脚本的方法
    Tomcat调优
    Nginx调优
  • 原文地址:https://www.cnblogs.com/Aragaki/p/8598517.html
Copyright © 2011-2022 走看看