zoukankan      html  css  js  c++  java
  • [机器学习] 模型评价参数,准确率,召回率,F1-score

    很久很久以前,我还是有个建筑梦的大二少年,有一天,讲图的老师看了眼我的设计图,说:“我觉得你这个设计做得很紧张”,当时我就崩溃,对紧张不紧张这样的评价标准理解无能。多年后我终于明白老师当年的意思,然鹅已经跳坑计算机系了。现在我依然对建筑系那玄幻的评价标准敬而远之,看我们大CS的评价标准,就是这么明明白白,n^2的算法复杂度就是不如lgn的!妈妈再也不用担心我紧张~~~

    言归正传,先截张图吧:

    Accuracy   是模型结果中不管正例负例只要预测对了就算的比例;

    Precision   是指在所有模型预测为正例的数据项中真正为正例的比例;

    Recall    是指模型预测出的正例占全部真正正例的比例;

    F1-score  准确率和找汇率的一个综合加权,因为算法的侧重点不同,召回率高的模型可能在准确率上会表现稍差,准确率比较高的模型由于其标准高,召回率不尽如人意也是有的,F1-score综合考虑了这两个参数的影响

    F1-score中的1表示召回率的权重,F0.5表示准确率的权重跟高,F2表示召回率的权重更高:

    --截图from: 《learning scikit-learn machine learning in python》

  • 相关阅读:
    ruby_debug笔记
    来自Neil
    rails 在迭代里的那些条件
    rails 表单嵌套
    rails present? 和 blank? 对于bool 值
    泛泛
    设计模式——策略模式
    Spring容器初始化过程
    Spring之ResourceLoader加载资源
    Spring之ClassPathResource加载资源文件
  • 原文地址:https://www.cnblogs.com/Arborday/p/8371259.html
Copyright © 2011-2022 走看看