zoukankan      html  css  js  c++  java
  • HDU 6103 Kirinriki【尺取法】【思维题】【好题】

    Kirinriki

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 456    Accepted Submission(s): 160


    Problem Description
    We define the distance of two strings A and B with same length n is
    disA,B=i=0n1|AiBn1i|
    The difference between the two characters is defined as the difference in ASCII.
    You should find the maximum length of two non-overlapping substrings in given string S, and the distance between them are less then or equal to m.
     

    Input
    The first line of the input gives the number of test cases T; T test cases follow.
    Each case begins with one line with one integers m : the limit distance of substring.
    Then a string S follow.

    Limits
    T100
    0m5000
    Each character in the string is lowercase letter, 2|S|5000
    |S|20000
     

    Output
    For each test case output one interge denotes the answer : the maximum length of the substring.
     

    Sample Input
    1 5 abcdefedcb
     

    Sample Output
    5
    Hint
    [0, 4] abcde [5, 9] fedcb The distance between them is abs('a' - 'b') + abs('b' - 'c') + abs('c' - 'd') + abs('d' - 'e') + abs('e' - 'f') = 5
     

    Source

    题意:

    给出字符串s,寻找其两个长度相同且不重叠的子串,满足其每位的ascil差值之和不大于m,且长度最长。

    思路:

    因为字符串的长度为5000,所以可以枚举两个子串的对称轴,然后对其区间进行尺取法,这样只需要o(n^2)的复杂度即可。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <cmath>
    #include <algorithm>
    #include <queue>
    #include <map>
    using namespace std;
    const int INF = 0x3f3f3f3f;
    const int maxn = 5010;
    
    char a[maxn], num[maxn];
    int m;
    
    int solve(int len)
    {
    	int s = 0, t = 0, ans = 0, sum = 0;
    	while (1)
    	{
    		while (sum + num[t] <= m && t < len)
    		{
    			sum += num[t];
    			ans = max(t - s + 1, ans);
    			t++;
    		}
    		sum -= num[s++];
    		if (s >= len) break;
    	}
    	return ans;
    }
    
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		int len, res = 0;
    		scanf("%d", &m);
    		scanf("%s", a);
    		len = strlen(a);
    		for (int i = 0; i <= len; i++)	//枚举折的中点
    		{
    			int cnt = 0;
    			for (int j = 1; j + i < len && i - j >= 0; j++)	//枚举奇数情况
    				num[cnt++] = abs(a[j + i] - a[i - j]);
    			res = max(res, solve(cnt));
    		}
    		for (int i = 0; i <= len; i++)	//枚举折的中点
    		{
    			int cnt = 0;
    			for (int j = 1; j + i - 1 < len && i - j >= 0; j++)	//枚举偶数情况
    				num[cnt++] = abs(a[j + i - 1] - a[i - j]);
    			res = max(res, solve(cnt));
    		}
    		printf("%d
    ", res);
    	}
    	return 0;
    }




    Fighting~
  • 相关阅读:
    Java并发编程:CountDownLatch、CyclicBarrier和Semaphore (总结)
    Java线程面试题 Top 50 (个人总结)(转)
    rabbitMQ windows 安装 入门(转)
    Java并发编程:volatile关键字解析(学习总结-海子)
    关于Sychronized和volatile自己总结的一点点理解(草稿)
    FWORK-数据存储篇 -- 范式与反模式 (学习和理解)
    Synchronized的原理及自旋锁,偏向锁,轻量级锁,重量级锁的区别(摘抄和理解)
    vcfc之zk+postsql+keystore(cassandra)框架分析
    CAP理论-解析
    java多线程通信 例子
  • 原文地址:https://www.cnblogs.com/Archger/p/12774717.html
Copyright © 2011-2022 走看看