Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 42886 | Accepted: 17234 |
Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter 'e'. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T's is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {'A', 'B', 'C', …, 'Z'} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
- One line with the word W, a string over {'A', 'B', 'C', …, 'Z'}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
- One line with the text T, a string over {'A', 'B', 'C', …, 'Z'}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
Source
找出第一个字符串在第二个字符串中出现次数
#include <iostream> #include <cmath> #include <algorithm> #include <cstdio> #include <stdlib.h> #include <string> #include <cstring> #include <map> #include <set> #include <queue> #include <stack> #define INF 0x3f3f3f3f #define ms(x,y) memset(x,y,sizeof(x)) using namespace std; typedef long long ll; const double pi = acos(-1.0); const int mod = 1e9 + 7; const int maxn = 1e5 + 10; int nextval[100010]; char s[1000100],p[1000010]; //p为模式串 void getnext(char p[], int nextval[]) //朴素kmp,nextval[i]即为1~i-1的最长前后缀长度 { int len=strlen(p); int i=0,j=-1; nextval[0]=-1; while(i<len) { if(j==-1||p[i]==p[j]) { nextval[++i]=++j; } else j=nextval[j]; } } //在s中找p出现的次数 int KMP(char s[], char p[], int nextval[]) { getnext(p,nextval); int ans=0; int i=0; //s下标 int j=0; //p下标 int s_len=strlen(s); int p_len=strlen(p); while(i<s_len&&j<p_len) { if(j==-1||s[i]==p[j]) { i++; j++; } else j=nextval[j]; if(j==p_len) { j=nextval[j]; //注意这个优化比较重要 ans++; } } return ans; } int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int n; scanf("%d",&n); while(n--) { ms(p,0); ms(s,0); scanf(" %s %s",p,s); printf("%d ",KMP(s,p,nextval)); } return 0; }