zoukankan      html  css  js  c++  java
  • ZOJ 3194 Coverage【贪心】【思维题】

    Coverage

    Time Limit: 1 Second      Memory Limit: 32768 KB

    Given n points (xi, yi) (i = 1, 2 ... n) in a plane, where all xi will be distinct. After connecting the n points with staight lines in order from the leftmost point to the rightmost point, the area below the lines is called coverage. Now, it's your job to calculate the maximum coverage area, if yi (i = 1, 2 ... n) can be swapped arbitrarily.

    Input

    The first line of the input is an integer t (t <= 100), indicate the number of cases.

    Each case starts with one integer n (2 <= n <= 1000) in a line. Then follows n lines, each consists of two integers x y (1 <= xy <= 105) representing a point.

    Cases are separated by one blank line.

    Output

    For each case, output the answer in a line, keep 1 digit after the decimal point.

    Sample Input

    2
    3
    1 1
    2 2
    3 3
    
    3
    1 2
    4 1
    2 5
    

    Sample Output

    4.5
    10.0
    题意:对于题目给的点,x固定,而与x组合的y可以任意交换,求如何安置y可使这些点组成线段下面的面积最大,最大面积是多少



    #include <iostream>
    #include <algorithm>
    #include <stdio.h>
    using namespace std;
    typedef long long ll;
    
    const int mod = 1e9 + 7;
    const int maxn = 1010;
    
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		int n;
    		double x[maxn], y[maxn], dis[maxn];
    		scanf("%d", &n);
    		for (int i = 0; i < n; i++)
    		{
    			scanf("%lf%lf", x + i, y + i);
    		}
    		sort(x, x + n);
    		sort(y, y + n);
    		dis[0] = x[1] - x[0];
    		dis[n - 1] = x[n - 1] - x[n - 2];
    		for (int i = 1; i < n - 1; i++)
    		{
    			dis[i] = x[i + 1] - x[i - 1];
    		}
    		sort(dis, dis + n);
    		double ans = 0;
    		for (int i = 0; i < n; i++)
    		{
    			ans += dis[i] * y[i];
    		}
    		printf("%.1f
    ", ans / 2.0);
    	}
    	return 0;
    }




    Fighting~
  • 相关阅读:
    5.1、字符串插入
    2.2、部署 Discuz!
    7.1.5、测试数组
    4.2、php 注释
    5.2、操作符
    2.3、初始化 Discuz!
    5.3、控制结构
    gradle 又一项目构建工具
    1.1、概述
    7.1.8、通过追加数组的方式创建数组
  • 原文地址:https://www.cnblogs.com/Archger/p/8451588.html
Copyright © 2011-2022 走看看