zoukankan      html  css  js  c++  java
  • ZOJ 3822 Domination【概率dp】

    Domination

    Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge

    Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What's more, he bought a large decorative chessboard with N rows and M columns.

    Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column.

    "That's interesting!" Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    There are only two integers N and M (1 <= NM <= 50).

    Output

    For each test case, output the expectation number of days.

    Any solution with a relative or absolute error of at most 10-8 will be accepted.

    Sample Input

    2
    1 3
    2 2
    

    Sample Output

    3.000000000000
    2.666666666667
    
    
    

    有个n*m的棋盘,每次在其中随机选一个位置放一个棋子,问期望次数是多少次之后,棋盘上的每行每列至少都要有一个棋子。

    设dp[i][j][k]其中i表示从n中任意选i行,j表示从n中任意选j列,k表示在选出的i行和j列在满足每行列都有一个的情况下选了k个,数组中存满足的概率。

    则每次放一个新的棋子对原来状态的影响只有四种可能:

    1. 没有影响。

    2. 多出新的一行满足要求。

    3. 多出新的一列满足要求。

    4. 多出新的一行一列满足要求。

    状态转移方程分别是:

    1. dp[i][j][k] += dp[i - 1][j][k - 1] * (n - i + 1) * j / (n * m - k + 1)                   

    2. dp[i][j][k] += dp[i][j - 1][k - 1] * (m - j + 1) * i / (n * m - k + 1)

    3. dp[i][j][k] += dp[i - 1][j - 1][k - 1] * (n - i + 1) * (m - j + 1) / (n * m - k + 1)

    4. dp[i][j][k] += dp[i][j][k - 1] * (i * j - k + 1) / (n * m - k + 1)

    #include<iostream>	
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<queue>
    #include<map>
    #include<set>
    #include<stack>
    #include<bitset>
    #include<numeric>
    #include<vector>
    #include<string>
    #include<iterator>
    #include<cstring>
    #include<functional>
    #define INF 0x3f3f3f3f
    #define ms(a,b) memset(a,b,sizeof(a))
    using namespace std;
    
    const int maxn = 55;
    const int mod = 1e9 + 7;
    const double pi = 3.14159265358979;
    
    typedef pair<int, int> P;
    typedef long long ll;
    typedef unsigned long long ull;
    
    double dp[maxn][maxn][maxn*maxn];
    
    int main()
    {
    	int t;
    	scanf("%d", &t);
    	while (t--)
    	{
    		int n, m;
    		scanf("%d%d", &n, &m);
    		ms(dp, 0);
    		dp[1][1][1] = 1;
    		for (int i = 1; i <= n; i++)
    		{
    			for (int j = 1; j <= m; j++)
    			{
    				for (int k = 1; k <= i*j; k++)
    				{
    					dp[i][j][k] += dp[i - 1][j][k - 1] * ((double)(n - i + 1)*j / (n*m - k + 1));
    					dp[i][j][k] += dp[i][j - 1][k - 1] * ((double)(m - j + 1)*i / (n*m - k + 1));
    					dp[i][j][k] += dp[i - 1][j - 1][k - 1] * ((double)(n - i + 1)*(m - j + 1) / (n*m - k + 1));
    					dp[i][j][k] += dp[i][j][k - 1] * ((double)(i*j - k + 1) / (n*m - k + 1));
    				}
    			}
    		}
    		double ans = 0;
    		for (int i = 1; i <= n*m; i++)
    		{
    			ans += i*(dp[n][m][i] - dp[n][m][i - 1]);
    		}
    		printf("%.12f
    ", ans);
    	}
    }




    Fighting~
  • 相关阅读:
    电路维修 (广搜变形-双端队列bfs)
    靶形数独 (dfs+预处理+状态压缩)
    埃及分数问题(带乐观估计函数的迭代加深搜索算法-IDA*)
    weight (搜索对象的选取)
    Codeforces Round #506 (Div. 3)
    生日蛋糕 (poj1190) (dfs剪枝)
    校内模拟赛题面
    NOIP2013 D1T3 货车运输 zz耻辱记
    NOIP2011 D2T3 观光公交 做题笔记
    ARC 103
  • 原文地址:https://www.cnblogs.com/Archger/p/8451641.html
Copyright © 2011-2022 走看看