zoukankan      html  css  js  c++  java
  • 最短路算法包

    最短路算法包

    标签: ACM 最短路


    
    #include<iostream>
    #include<string>
    #include<string.h>
    #include<algorithm>
    #include<iomanip>
    #include<cstdio>
    #include<queue>
    #include<stack> 
    #include<vector>
    #include<functional>  
    #define INF 99999
    using namespace std;
    
    typedef pair<int, int> P;
    
    struct edge {
        int from, to, cost;
    };
    
    int n, m;           //n为顶点数,m为边数
    int a[100][100];
    
    void warshall()
    {
        int b[100][100] = { 0 };
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= n; j++)
                b[i][j] = a[i][j];
        cout << "Floyd-warshall: 
    ";
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                for (int k = 1; k <= n; k++)
                {
                    if (b[j][k] > b[j][i] + b[i][k])
                    {
                        b[j][k] = b[j][i] + b[i][k];
                    }
                }
            }
        }
        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                cout << b[i][j] << " ";
            }
            cout << endl;
        }
    }
    
    void Dijkstra()
    {
        int dis[100] = { 0 };
        bool book[100] = { 0 };
        int b[100][100] = { 0 };
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= n; j++)
                b[i][j] = a[i][j];
        for (int i = 1; i <= n; i++)
        {
            dis[i] = a[1][i];
        }
        book[1] = 1;
    
        for (int i = 1; i <= n - 1; i++)
        {
            int minv = INF, min = 0;
            for (int i = 1; i <= n; i++)
            {
                if (!book[i] && minv > dis[i])
                {
                    minv = dis[i];                   //在取最小值的过程中可以用堆优化
                    min = i;
                }
            }
            book[min] = 1;
            for (int j = 1; j <= n; j++)
            {
                if (dis[j] > dis[min] + a[min][j])
                {
                    dis[j] = dis[min] + a[min][j];    //用最短的边对其他所有点进行优化
                }
            }
        }
        for (int i = 1; i <= n; i++)
        {
            cout << dis[i] << " ";
        }
        cout << endl;
    }
    
    void Bellman()
    {
        int dis[100] = { 0 };
        int b[100][100] = { 0 };
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= n; j++)
                b[i][j] = a[i][j];
        for (int i = 1; i <= n; i++)
            dis[i] = INF;
        dis[1] = 0;
        /*for (int i = 1; i <= n; i++)
        {
            dis[i] = a[1][i];
        }*/
        for (int i = 1; i <= n - 1; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                for (int k = 1; k <= n; k++)
                {
                    if (dis[k] > dis[j] + a[j][k])
                    {
                        dis[k] = dis[j] + a[j][k];
                    }
                }
            }
        }
        for (int i = 1; i <= n; i++)
        {
            cout << dis[i] << " ";
        }
        cout << endl;
    }
    
    void BellmanQueue()
    {
        int dis[100] = { 0 };
        int b[100][100] = { 0 };
        for (int i = 0; i <= n; i++)
            for (int j = 0; j <= n; j++)
                b[i][j] = a[i][j];
        for (int i = 1; i <= n; i++)
            dis[i] = INF;
        dis[1] = 0;
        queue<int> que;
        bool book[100] = { 0 };
        que.push(1);
        book[1] = 1;
        while (que.size())
        {
            int k = que.front();
            que.pop();
            for (int i = 1; i <= n; i++)
            {
                if (dis[i] > dis[k] + b[k][i])
                {
                    dis[i] = dis[k] + b[k][i];
                    if (!book[i])
                    {
                        que.push(i);
                        book[i] = 1;
                    }
                }
            }
            book[k] = 0;
        }
        for (int i = 1; i <= n; i++)
        {
            cout << dis[i] << " ";
        }
        cout << endl;
    }
    
    void warshall2()
    {
        vector<edge> G[100];
        int n, m;
        cin >> n >> m;
        for (int i = 0; i < m; i++)
        {
            int p;
            edge q;
            cin >> p >> q.to >> q.cost;
            G[p].push_back(q);
        }
        for (int i = 1; i <= n; i++)
        {
            for (int k = 1; k <= n; k++)
            {
                for (int j = 0; j < G[k].size(); j++)
                {
                    edge e = G[k][j];
                }
            }
        }
        cout << "不会
    ";
    }
    
    void Dijkstra2()
    {
        vector<edge> G[100];
        int n, m;
        cin >> n >> m;
        int dis[100] = { 0 };
        fill(dis, dis + 100, INF);
        dis[1] = 0;
        for (int i = 0; i < m; i++)
        {
            int p;
            edge q;
            cin >> p >> q.to >> q.cost;
            G[p].push_back(q);
        }
        priority_queue<P, vector<P>, greater<P> >que;
        que.push(P(0, 1));
        while (que.size())
        {
            P p= que.top(); que.pop();
            for (int i = 0; i < G[p.second].size(); i++)
            {
                edge e = G[p.second][i];
                if (dis[e.to] > dis[p.second] + e.cost)
                {
                    dis[e.to] = dis[p.second] + e.cost;
                    que.push(P(dis[e.to], e.to));
                }
            }
        }
        for (int i = 1; i <= n; i++)
        {
            cout << dis[i] << " ";
        }
        cout << endl;
    }
    
    void Bellman2()
    {
        edge G[100];
        int n, m;
        cin >> n >> m;
        int dis[100] = { 0 };
        fill(dis, dis + 100, INF);
        dis[1] = 0;
        for (int i = 0; i < m; i++)
        {
            cin >> G[i].from >> G[i].to >> G[i].cost;
        }
        for (int i = 1; i <= n - 1; i++)
        {
            for (int j = 0; j < m; j++)
            {
                dis[G[j].to] = min(dis[G[j].to], dis[G[j].from] + G[j].cost);
            }
        }
        for (int i = 1; i <= n; i++)
        {
            cout << dis[i] << " ";
        }
        cout << endl;
    }
    
    int main()
    {
        cin >> n >> m;
        for(int i=0;i<=n;i++)
            for (int j = 0; j <= n; j++)
            {
                if (i == j) a[i][j] = 0;
                else a[i][j] = INF;
            }
        for (int i = 1; i <= m; i++)
        {
            int p, q, t;
            cin >> p >> q >> t;
            a[p][q] = t;
        }
        cout << "邻接矩阵:
    ";
        cout << "1:Floyd-warshall    2:Dijkstra    3:Bellman-Ford    4:Bellman队列优化(SPFA)
    ";
        cout << "邻接表
    ";
        cout << "5:Floyd-warshall    6:Dijkstra(堆优化)   7:Bellman-Ford
    ";
        int t;
        while (cin >> t)
        {
            if (t == 1)
            {
                warshall();
            }
            else if (t == 2)
            {
                cout << "Dijkstra:
    ";
                Dijkstra();
            }
            else if (t == 3)
            {
                cout << "Bellman-Ford:
    ";
                Bellman();
            }
            else if (t == 4)
            {
                cout << "Bellman队列优化:
    ";
                BellmanQueue();
            }
            else if (t == 5)
            {
                cout << "Floyd-warshall(邻接表):
    ";
                warshall2();
            }
            else if (t == 6)
            {
                cout << "Dijkstra(堆优化) 
    ";
                Dijkstra2();
            }
            else if (t == 7)
            {
                cout << "Bellman-Ford:
    ";
                Bellman2();
            }
        }
    }
    Fighting~
  • 相关阅读:
    Visual SVN1.5以上版本下载及破解过程
    C#线程系列讲座(2):Thread类的应用
    a标签的href 和onclick
    Windows 服务快捷启动命令
    iframe 跨域自动适应高度
    修正认知:string、Empty和null三者的正确区别

    线索二叉树
    最大连续子序列
    寻找最近点对
  • 原文地址:https://www.cnblogs.com/Archger/p/8451667.html
Copyright © 2011-2022 走看看