zoukankan      html  css  js  c++  java
  • 笔记—机器学习中的数学基础(1)

    几个重要数学读法

     C是一个实数)

    x趋于C时(经常的情况是"趋于无穷大时"),f(x)的极限是L

    the limit of f of x, as x approaches c, is L

     f(x) can be made to be as close to L as desired by making x sufficiently close to c.

    f'(x)f一撇xf(x) 的导(函)数,函数f(x)的一阶导数(first derivative)。我们经常求某一函数的导函数在某一点的值。

    ※ 导数所表示的是一个极限值,而不是两个数量 dydx 的商。

    f''(x)f两撇xf'(x) 的导(函)数,f(x)的二阶导数(second derivative

    ※ 二阶导数是斜率变化快慢的反应,表征曲线的凸凹性。

    ,读作:xm次方的微分=m乘以xm1次方乘以dx。(dx中的意思是infinitesimal  [ɪnfɪnɪˈtesɪm(ə)l] adj. 极小的)

    z=f(xy),那么读作"函数zx的偏微分(the partial derivative of z with respect to x)",或读作"偏捱副 偏捱克斯"; 因为这个符号是法国人发明的,一开始是叫round

    函数f(x)的不定积分

    the indefinite integral of f(x)

    函数f(x)a,b的闭区间(即,[a, b])内的定积分

    the definite integral of the function of x from a to b

     

    n元函数

    一元函数(function of one variable)的图像y=f(x)在二维坐标里是曲线;

    二元函数(function of two variables)的图像z=f(x,y)在三维坐标里是曲面;

    三元函数(function of three variables)的图像w=f(x,y,z)在四维坐标里是立体;

    只不过因为现实空间是三维的,所以需要一点想像力来想像四维坐标,及坐标里的立体。

     

    极限

    limit

    Thus for the limit of a function to exist as the independent variable approaches c , the left-hand and right-hand limits must be equal.

       

    if and only if

    如果函数f(x)在自变量x的变化过程中存在极限,即常数A,那么我们可以说f(x)收敛到A,简称f(x)收敛(convergence);否则,称f(x)发散(divergence)。

     

     

     

    导数

    Derivative

    The instantaneous rate of change of a function with respect to its variable.

    函数随其变量的即时变化率

    Derivative is the slope of the tangent line to a function graph, e.g. a curve, at a certain point. Also called differential coefficient ,fluxion 

    微商/倒数函数图像(如曲线)某一点切线的斜率。

     

    严格定义:

    如果函数f(x)(a,b)中每一点处都可导,则称f(x)(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x).

     

     

     

     

     

    微分

    differentiation

    The process of computing a derivative is called differentiation 微分:计算导数的过程

     

     

     

    导数与微分的计算

    设 u = u(x),v = v(x)为可导函数c 是常数,则有:

     

     

     

     

    偏导数/偏微商

    partial derivative

    The derivative with respect to a single variable of a function of two or more variables, regarding other variables as constants.

    偏导数/偏微商:多变量函数对其中一个变量的微商,其余变量视作常数.

     

     

    二元函数偏导数的几何意义

    过M0点作平面y=y0 / 过M0点作平面x=x0:

     

     

     

     

     

  • 相关阅读:
    CSS3实战:让我们尽情的圆角吧
    IE9、 Firefox、Safari, Chrome的CSS3圆角属性
    css清除浮动的几种方法整理
    display:inline-block的深入理解
    CSS display 属性详解
    ul 、ol li 继承原有样式的问题
    CSS的继承性
    CSS文档流与块级元素和内联元素(文档)
    HTML5 中的块级链接
    常用icon以及color颜色RGB值和对应颜色效果图
  • 原文地址:https://www.cnblogs.com/ArrozZhu/p/8396791.html
Copyright © 2011-2022 走看看