zoukankan      html  css  js  c++  java
  • 二叉树的表达

    2019-08-03

    19:52:58

    A rooted binary tree is a tree with a root node in which every node has at most two children.

    Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:

    • node ID of u
    • parent of u
    • sibling of u
    • the number of children of u
    • depth of u
    • height of u
    • node type (root, internal node or leaf)

    If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).

    The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.

    Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

    Input

    The first line of the input includes an integer n, the number of nodes of the tree.

    In the next n lines, the information of each node is given in the following format:

    id left right

    id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.

    Output

    Print the information of each node in the following format:

    node id: parent = p , sibling = s , degree = deg, depth = dep, height = htype

    p is ID of its parent. If the node does not have a parent, print -1.

    s is ID of its sibling. If the node does not have a sibling, print -1.

    degdep and h are the number of children, depth and height of the node respectively.

    type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.

    Please follow the format presented in a sample output below.

    Constraints

    • 1 ≤ n ≤ 25

    Sample Input 1

    9
    0 1 4
    1 2 3
    2 -1 -1
    3 -1 -1
    4 5 8
    5 6 7
    6 -1 -1
    7 -1 -1
    8 -1 -1
    

    Sample Output 1

    node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root
    node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node
    node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf
    node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf
    node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node
    node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node
    node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf
    node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf
    node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf
    #include <bits/stdc++.h>
    using namespace std;
    #define MAX 100005
    #define NIL -1
    
    int H[MAX];
    int D[100005];
    struct Node{
        int parent,left,right;
    }t[MAX];
    
    void setDepth(int u, int d)
    {
        if(u == NIL) return ;
        D[u] = d;
        setDepth(t[u].left, d + 1);
        setDepth(t[u].right, d + 1);
    }
    
    int setHeight(int u)
    {
        int h1 = 0,h2 = 0;
        if(t[u].left != NIL)
        {
            h1 = setHeight(t[u].left) + 1;
        }
        if(t[u].right != NIL)
        {
            h2 = setHeight(t[u].right) + 1;
        }
        H[u] = max(h1 , h2);
        return H[u];
    }
    
    int getSibling(int u)
    {
        if(t[u].parent == NIL) return NIL;
        if(t[t[u].parent].left != u && t[t[u].parent].left != NIL)
        {
            return t[t[u].parent].left;
        }
        if(t[t[u].parent].right != u && t[t[u].parent].right != NIL)
        {
            return t[t[u].parent].right;
        }
        return NIL;
    }
    void print(int u)
    {
        printf("node %d: ", u);
        printf("parent = %d, ",  t[u].parent);
        printf("sibling = %d, ", getSibling(u));
        int deg = 0;
        if(t[u].left != NIL) deg++;
        if(t[u].left != NIL) deg++;
        printf("degree = %d, ", deg);
        printf("depth = %d, ", D[u]);
        printf("height = %d, ", H[u]);
        
        if(t[u].parent == NIL)
        {
            printf("root
    ");
        }
        else if(t[u].left == NIL && t[u].right == NIL)
        {
            printf("leaf
    ");
        } 
        else
        {
             printf("internal node
    ");
        }
    }
    int main()
    {
        int n;
        cin >> n;
        int root = 0;
        
        for(int i = 0; i < n; i++) t[i].parent = NIL;
        
        for(int i = 0 ; i < n ;i++)
        {
            int v;
            int l, r;
            cin >> v >> l >> r;
            t[i].left = l;
            t[i].right = r;
            if(l != NIL) t[l].parent = v;
            if(r != NIL) t[r].parent = v;
        }
        
        for(int i = 0; i < n; i++)
        {
            if(t[i].parent == NIL) root = i;
        }
        setDepth(root, 0);
        setHeight(root);
        
        for(int i = 0; i < n; i++)
        {
            print(i);
        }
        cout << getSibling(3) << endl;
        return 0;
    }
  • 相关阅读:
    excel经典图表
    excel数据透视表
    excel常用快捷键和技巧
    excel常用公式--时间序列类
    excel常用公式--计算统计类
    excel常用公式--逻辑运算类
    excel常用公式--关联匹配类
    FileWriter字符输出流和FileReader字符输出流
    FileOutputStream字节输出流和FileInputStream输入流(切记:out是输出到本地中,in是输入到程序中)这里介绍大文件和小文件的读取方式
    DataInputStream(二进制输入流)和DataOutputStream二进制输出流(注意:in是从本地文件输入到程序中,out是从程序输出到本地种)
  • 原文地址:https://www.cnblogs.com/Artimis-fightting/p/11296051.html
Copyright © 2011-2022 走看看