zoukankan      html  css  js  c++  java
  • 算法复习——欧拉函数(poj3090)

    题目:

    Description

    A lattice point (xy) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (xy) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (xy) with 0 ≤ xy ≤ 5 with lines from the origin to the visible points.

    Write a program which, given a value for the size, N, computes the number of visible points (xy) with 0 ≤ xy ≤ N.

    Input

    The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

    Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

    Output

    For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

    Sample Input

    4
    2
    4
    5
    231

    Sample Output

    1 2 5
    2 4 13
    3 5 21
    4 231 32549

    题解:

    欧拉函数模板题。

    心得:

    感觉欧拉函数稍微考得隐晦点的就是可视点问题了···嗯就这样

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<ctime>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<cctype>
    using namespace std;
    const int N=1006;
    int phi[N],sum[N],n;
    void pre()
    {
      for(int i=1;i<N;i++)
        phi[i]=i;
      for(int i=2;i<N;i++)  
        if(phi[i]==i)
          for(int j=i;j<N;j+=i)
            phi[j]=phi[j]*(i-1)/i;
      for(int i=2;i<N;i++)
        sum[i]=phi[i]+sum[i-1];
    }
    int main()
    {  
      //freopen("a.in","r",stdin);
      pre();
      scanf("%d",&n);
      for(int i=1;i<=n;i++)
      {
        int k;
        scanf("%d",&k);
        cout<<i<<" "<<k<<" "<<sum[k]*2+3<<endl;
      }
      return 0;
    }
  • 相关阅读:
    hibernate对应的annocation版本
    Struts 2 OGNL
    Struts2的Stack Context和ValueStack
    Struts2中的OGNL详解
    struts2中根对象以及ognl .
    在Struts 2中实现IoC
    Struts2的属性驱动与模型驱动的区别
    Struts2的模型驱动
    Java中线程的锁和数据库中的事务隔离级别
    为什么socket编程要用到多线程
  • 原文地址:https://www.cnblogs.com/AseanA/p/6663753.html
Copyright © 2011-2022 走看看