zoukankan      html  css  js  c++  java
  • 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)

    题目:

    Problem Description

    Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.
    There are m chain on the tree, Each chain has a certain weight. Coco would like to pick out some chains any two of which do not share common vertices.
    Find out the maximum sum of the weight Coco can pick

    Input

    The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
    For each tests: 
    First line two positive integers n, m.(1<=n,m<=100000)
    The following (n - 1) lines contain 2 integers ai bi denoting an edge between vertices ai and bi (1≤ai,bi≤n),
    Next m lines each three numbers u, v and val(1≤u,v≤n,0<val<1000), represent the two end points and the weight of a tree chain.

    Output

    For each tests:
    A single integer, the maximum number of paths.

    Sample Input

    1 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 4 5 3 6 7 3

    Sample Output

    6

    题解:

      见:http://blog.csdn.net/cdsszjj/article/details/78249687

      很好的一道树形dp题··感觉以后要是考到关于根节点到其所在子树中某一点所形成的链的相关题都可以这样考虑·····

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<ctime>
    #include<cctype>
    #include<string>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int N=2e5+5;
    struct node
    {
      int x,y,val;
    }line[N];
    vector<int>root[N];
    inline int R()
    {
      char c;int f=0;
      for(c=getchar();c<'0'||c>'9';c=getchar());
      for(;c<='9'&&c>='0';c=getchar())  f=(f<<3)+(f<<1)+c-'0';
      return f;
    }
    int T,fst[N],go[N],nxt[N],tot,n,m;
    int tree[N],g[N][25],deep[N],f[N],sum[N],l[N],r[N],cnt;
    inline void comb(int a,int b)
    {
      nxt[++tot]=fst[a],fst[a]=tot,go[tot]=b;
      nxt[++tot]=fst[b],fst[b]=tot,go[tot]=a;
    }
    inline void dfs(int u,int fa)
    {
      l[u]=++cnt;
      for(int e=fst[u];e;e=nxt[e])
      {
        int v=go[e];if(v==fa)  continue;
        deep[v]=deep[u]+1,g[v][0]=u;dfs(v,u);
      }
      r[u]=cnt+1;
    }
    inline int get(int a,int b)
    {
      int i,j;
      if(deep[a]<deep[b])  swap(a,b);
      for(i=0;(1<<i)<=deep[a];i++);i--;
      for(j=i;j>=0;j--)
        if(deep[a]-(1<<j)>=deep[b])  a=g[a][j];
      if(a==b)  return a;
      for(i=20;i>=0;i--)
        if(g[a][i]!=g[b][i])  a=g[a][i],b=g[b][i];
      return g[a][0];
    }
    inline int query(int pos)
    {
      int temp=0;
      for(int i=pos;i;i-=(i&(-i)))  temp+=tree[i];
      return temp; 
    }
    inline void insert(int pos,int x)
    {
      for(int i=pos;i<=n+1;i+=(i&(-i)))  tree[i]+=x;
    }
    inline void dp(int u,int fa)
    {
      sum[u]=0,f[u]=0;
      for(int e=fst[u];e;e=nxt[e])
      {
        int v=go[e];
        if(v==fa)  continue;
        dp(v,u);sum[u]+=f[v];
      }
      f[u]=sum[u];
      for(int i=0;i<root[u].size();i++)
      {
        node temp=line[root[u][i]];
        int a=temp.x,b=temp.y,c=temp.val;
        f[u]=max(f[u],sum[u]+query(l[a])+query(l[b])+c);
      }
      insert(l[u],sum[u]-f[u]);
      insert(r[u],f[u]-sum[u]);
    }
    inline void pre()
    {
      memset(fst,0,sizeof(fst));tot=0,cnt=0;
      memset(g,0,sizeof(g));memset(tree,0,sizeof(tree));
      for(int i=1;i<=n;i++)  root[i].clear();
    }
    int main()
    {
      //freopen("a.in","r",stdin);
      T=R();
      while(T--)
      {
        n=R(),m=R();int a,b,c;
        pre();
        for(int i=1;i<n;i++)  a=R(),b=R(),comb(a,b);
        dfs(1,0);
        for(int i=1;i<=20;i++)
          for(int j=1;j<=n;j++)  g[j][i]=g[g[j][i-1]][i-1];
        for(int i=1;i<=m;i++)
        {
          a=R(),b=R(),c=R();
          int lca=get(a,b);
          root[lca].push_back(i);
          line[i].x=a,line[i].y=b,line[i].val=c;
        }
        dp(1,0);
        cout<<f[1]<<endl;
      }
      return 0;
    }
     
  • 相关阅读:
    众包兼职平台有哪些?
    提高页面速度的10种相对简单方法
    如何设计第三方账号登陆
    Nginx的配置参数中文说明
    确定你已经彻底搞懂Nginx了
    云编程,这是我见过最优雅的Web云端集成开发IDE-Cloud Studio
    Excel制作三级下拉菜单
    Excel多人共享
    spring_2_注入详解
    spring_1_工厂与第一个 Spring 程序
  • 原文地址:https://www.cnblogs.com/AseanA/p/7678787.html
Copyright © 2011-2022 走看看