zoukankan      html  css  js  c++  java
  • 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)

    题目:

    Problem Description

    Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.
    There are m chain on the tree, Each chain has a certain weight. Coco would like to pick out some chains any two of which do not share common vertices.
    Find out the maximum sum of the weight Coco can pick

    Input

    The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
    For each tests: 
    First line two positive integers n, m.(1<=n,m<=100000)
    The following (n - 1) lines contain 2 integers ai bi denoting an edge between vertices ai and bi (1≤ai,bi≤n),
    Next m lines each three numbers u, v and val(1≤u,v≤n,0<val<1000), represent the two end points and the weight of a tree chain.

    Output

    For each tests:
    A single integer, the maximum number of paths.

    Sample Input

    1 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 4 5 3 6 7 3

    Sample Output

    6

    题解:

      见:http://blog.csdn.net/cdsszjj/article/details/78249687

      很好的一道树形dp题··感觉以后要是考到关于根节点到其所在子树中某一点所形成的链的相关题都可以这样考虑·····

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<ctime>
    #include<cctype>
    #include<string>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int N=2e5+5;
    struct node
    {
      int x,y,val;
    }line[N];
    vector<int>root[N];
    inline int R()
    {
      char c;int f=0;
      for(c=getchar();c<'0'||c>'9';c=getchar());
      for(;c<='9'&&c>='0';c=getchar())  f=(f<<3)+(f<<1)+c-'0';
      return f;
    }
    int T,fst[N],go[N],nxt[N],tot,n,m;
    int tree[N],g[N][25],deep[N],f[N],sum[N],l[N],r[N],cnt;
    inline void comb(int a,int b)
    {
      nxt[++tot]=fst[a],fst[a]=tot,go[tot]=b;
      nxt[++tot]=fst[b],fst[b]=tot,go[tot]=a;
    }
    inline void dfs(int u,int fa)
    {
      l[u]=++cnt;
      for(int e=fst[u];e;e=nxt[e])
      {
        int v=go[e];if(v==fa)  continue;
        deep[v]=deep[u]+1,g[v][0]=u;dfs(v,u);
      }
      r[u]=cnt+1;
    }
    inline int get(int a,int b)
    {
      int i,j;
      if(deep[a]<deep[b])  swap(a,b);
      for(i=0;(1<<i)<=deep[a];i++);i--;
      for(j=i;j>=0;j--)
        if(deep[a]-(1<<j)>=deep[b])  a=g[a][j];
      if(a==b)  return a;
      for(i=20;i>=0;i--)
        if(g[a][i]!=g[b][i])  a=g[a][i],b=g[b][i];
      return g[a][0];
    }
    inline int query(int pos)
    {
      int temp=0;
      for(int i=pos;i;i-=(i&(-i)))  temp+=tree[i];
      return temp; 
    }
    inline void insert(int pos,int x)
    {
      for(int i=pos;i<=n+1;i+=(i&(-i)))  tree[i]+=x;
    }
    inline void dp(int u,int fa)
    {
      sum[u]=0,f[u]=0;
      for(int e=fst[u];e;e=nxt[e])
      {
        int v=go[e];
        if(v==fa)  continue;
        dp(v,u);sum[u]+=f[v];
      }
      f[u]=sum[u];
      for(int i=0;i<root[u].size();i++)
      {
        node temp=line[root[u][i]];
        int a=temp.x,b=temp.y,c=temp.val;
        f[u]=max(f[u],sum[u]+query(l[a])+query(l[b])+c);
      }
      insert(l[u],sum[u]-f[u]);
      insert(r[u],f[u]-sum[u]);
    }
    inline void pre()
    {
      memset(fst,0,sizeof(fst));tot=0,cnt=0;
      memset(g,0,sizeof(g));memset(tree,0,sizeof(tree));
      for(int i=1;i<=n;i++)  root[i].clear();
    }
    int main()
    {
      //freopen("a.in","r",stdin);
      T=R();
      while(T--)
      {
        n=R(),m=R();int a,b,c;
        pre();
        for(int i=1;i<n;i++)  a=R(),b=R(),comb(a,b);
        dfs(1,0);
        for(int i=1;i<=20;i++)
          for(int j=1;j<=n;j++)  g[j][i]=g[g[j][i-1]][i-1];
        for(int i=1;i<=m;i++)
        {
          a=R(),b=R(),c=R();
          int lca=get(a,b);
          root[lca].push_back(i);
          line[i].x=a,line[i].y=b,line[i].val=c;
        }
        dp(1,0);
        cout<<f[1]<<endl;
      }
      return 0;
    }
     
  • 相关阅读:
    P1197 [JSOI2008]星球大战[并查集+图论]
    P1955 [NOI2015]程序自动分析[离散化+并查集]
    取模运算律[简单数学]
    P1462 通往奥格瑞玛的道路[最短路+二分+堆优化]
    P1330 封锁阳光大学[搜索+染色]
    P1168 中位数[堆 优先队列]
    P2661 信息传递[最小环+边带权并查集]
    P1080 【NOIP 2012】 国王游戏[贪心+高精度]
    P2085 最小函数值[优先队列]
    【转】priority_queue的用法
  • 原文地址:https://www.cnblogs.com/AseanA/p/7678787.html
Copyright © 2011-2022 走看看