zoukankan      html  css  js  c++  java
  • 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)

    题目:

    Problem Description

    Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.
    There are m chain on the tree, Each chain has a certain weight. Coco would like to pick out some chains any two of which do not share common vertices.
    Find out the maximum sum of the weight Coco can pick

    Input

    The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
    For each tests: 
    First line two positive integers n, m.(1<=n,m<=100000)
    The following (n - 1) lines contain 2 integers ai bi denoting an edge between vertices ai and bi (1≤ai,bi≤n),
    Next m lines each three numbers u, v and val(1≤u,v≤n,0<val<1000), represent the two end points and the weight of a tree chain.

    Output

    For each tests:
    A single integer, the maximum number of paths.

    Sample Input

    1 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 4 5 3 6 7 3

    Sample Output

    6

    题解:

      见:http://blog.csdn.net/cdsszjj/article/details/78249687

      很好的一道树形dp题··感觉以后要是考到关于根节点到其所在子树中某一点所形成的链的相关题都可以这样考虑·····

    代码:

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    #include<ctime>
    #include<cctype>
    #include<string>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    const int N=2e5+5;
    struct node
    {
      int x,y,val;
    }line[N];
    vector<int>root[N];
    inline int R()
    {
      char c;int f=0;
      for(c=getchar();c<'0'||c>'9';c=getchar());
      for(;c<='9'&&c>='0';c=getchar())  f=(f<<3)+(f<<1)+c-'0';
      return f;
    }
    int T,fst[N],go[N],nxt[N],tot,n,m;
    int tree[N],g[N][25],deep[N],f[N],sum[N],l[N],r[N],cnt;
    inline void comb(int a,int b)
    {
      nxt[++tot]=fst[a],fst[a]=tot,go[tot]=b;
      nxt[++tot]=fst[b],fst[b]=tot,go[tot]=a;
    }
    inline void dfs(int u,int fa)
    {
      l[u]=++cnt;
      for(int e=fst[u];e;e=nxt[e])
      {
        int v=go[e];if(v==fa)  continue;
        deep[v]=deep[u]+1,g[v][0]=u;dfs(v,u);
      }
      r[u]=cnt+1;
    }
    inline int get(int a,int b)
    {
      int i,j;
      if(deep[a]<deep[b])  swap(a,b);
      for(i=0;(1<<i)<=deep[a];i++);i--;
      for(j=i;j>=0;j--)
        if(deep[a]-(1<<j)>=deep[b])  a=g[a][j];
      if(a==b)  return a;
      for(i=20;i>=0;i--)
        if(g[a][i]!=g[b][i])  a=g[a][i],b=g[b][i];
      return g[a][0];
    }
    inline int query(int pos)
    {
      int temp=0;
      for(int i=pos;i;i-=(i&(-i)))  temp+=tree[i];
      return temp; 
    }
    inline void insert(int pos,int x)
    {
      for(int i=pos;i<=n+1;i+=(i&(-i)))  tree[i]+=x;
    }
    inline void dp(int u,int fa)
    {
      sum[u]=0,f[u]=0;
      for(int e=fst[u];e;e=nxt[e])
      {
        int v=go[e];
        if(v==fa)  continue;
        dp(v,u);sum[u]+=f[v];
      }
      f[u]=sum[u];
      for(int i=0;i<root[u].size();i++)
      {
        node temp=line[root[u][i]];
        int a=temp.x,b=temp.y,c=temp.val;
        f[u]=max(f[u],sum[u]+query(l[a])+query(l[b])+c);
      }
      insert(l[u],sum[u]-f[u]);
      insert(r[u],f[u]-sum[u]);
    }
    inline void pre()
    {
      memset(fst,0,sizeof(fst));tot=0,cnt=0;
      memset(g,0,sizeof(g));memset(tree,0,sizeof(tree));
      for(int i=1;i<=n;i++)  root[i].clear();
    }
    int main()
    {
      //freopen("a.in","r",stdin);
      T=R();
      while(T--)
      {
        n=R(),m=R();int a,b,c;
        pre();
        for(int i=1;i<n;i++)  a=R(),b=R(),comb(a,b);
        dfs(1,0);
        for(int i=1;i<=20;i++)
          for(int j=1;j<=n;j++)  g[j][i]=g[g[j][i-1]][i-1];
        for(int i=1;i<=m;i++)
        {
          a=R(),b=R(),c=R();
          int lca=get(a,b);
          root[lca].push_back(i);
          line[i].x=a,line[i].y=b,line[i].val=c;
        }
        dp(1,0);
        cout<<f[1]<<endl;
      }
      return 0;
    }
     
  • 相关阅读:
    openssl对数组加密解密的完整实现代码
    OpenSSl 加密解密 示例(终于有编程实践了)
    QT中QProcess调用命令行的痛苦经历(调用Winrar,设置工作目录,获得输出,注意引号与括号,等等)
    Ubuntu 14.04远程登录服务器--openssh的安装和配置简明步骤
    可复用的批量文件修改工具
    TFS二次开发、C#知识点、SQL知识
    Backbone.js的技巧和模式
    Hibernate:如何映射聚合?
    JavaScript之创建对象
    为什么选择MongoDB?
  • 原文地址:https://www.cnblogs.com/AseanA/p/7678787.html
Copyright © 2011-2022 走看看