zoukankan      html  css  js  c++  java
  • POJ 3083 Children of the Candy Corn (DFS + BFS + 模拟)

    题目链接:http://poj.org/problem?id=3083

    题意:

      这里有一个w * h的迷宫,给你入口和出口,让你分别求以下三种情况时,到达出口的步数(总步数包括入口和出口):

        第一种:当你需要选择下一个位置时,总是需要这么考虑:如果当前的左方能走,那么就走左方;否则考虑前方是否能走,如果能走,那么就选前方;否则考虑右方是否能走,如果可以,就走右方。如果不能就返回上一个位置,即当前位置的后方。总结下来选择道路的优先顺序为(以当前所处方位为准) 左 -> 上(前) -> 右 -> 下(后)。走过的路可以重复走,即走到死胡同了就可以原路返回了。

        第二种:与第一种差不多,仅仅是从右边开始考虑。选择道路的顺序为 右 -> 上(前) -> 左 -> 下(后)。

        第三种: 求从出口到入口的最短距离。

      出口和入口在迷宫的边缘,分别用“E”和“S”代表。“#”代表墙,“.”代表可以走的路。"E" 和 “S”之间肯定会存在一个 “#”,且都不会出现在角落,保证问题有解。

    思路及做法:

      处理第一种和第二种利用DFS,处理第三种的最短路径利用BFS. BFS的最短路径直接寻找就好,不用考虑方位。这里就着重解释下利用DFS来寻找第一种和第二种情况的解。

      首先利用一个不变的方位来阐述,假设以给出的图上方为北, 以下方为南, 以左方为西, 以右方为东,因为这四个方位始终都不变,比较好理解。

           1

    0    @     2

           3      

    假设此时人正处于“@”处,此时面向北方(”1“方位),“0“ 方位为 西方, ”1“ 方位为北方, ”2“方位为东方, ”3“方位为南方。假设此时的”@“的坐标为(0, 0),规定向下为x增大的方向, 向右为y增大的方向,则到”0“方位去的方法是给坐标加上(0, -1), 同理,到”1“方位加上(-1, 0),到”2“方位加(0,1),到”3“方位加上(1,0).那么可以定义两个数组:

    const int stepX[] = {0, -1, 0, 1};
    const int stepY[] = {-1, 0, 1, 0};

    当面向北方时,下标为i=0代表左转,i=1代表不改变方向直接往前走;i=2代表右转;i=3代表往回走,向后转。这是一个基准,其他各种情况需要以这个为基础。

    这个数组确定下来之后,就需要考虑每种情况下选择路时这个数组的下标的顺序。

    定义变量 rule 代表是按照第一种情况考虑(rule = 1)还是第二种情况考虑(rule = -1).

    定义变量 statu 代表当前面对的方向, statu = 1(此时面向北方) ,statu = 0(此时面向西方),statu = 2(面向东方),statu = 3(面向南方)

    第一种情况(rule = 1, 即左转优先)

    statu = 1(面向北方)

    遇到路时的选择顺序:   左转  直走  右转  后转

    基准数组下标的变化顺序:   0       1      2      3

    statu = 0(面向西方,此时南方为左边)

    遇到路时的选择顺序:   左转  直走  右转  后转

    基准数组下标的变化顺序:   3       0      1      2

    statu = 3(面向南方,此时东方为左边)

    遇到路时的选择顺序:   左转  直走  右转  后转

    基准数组下标的变化顺序:   2       3      0      1

    statu = 2(面向东方,此时北方为左边)

    遇到路时的选择顺序:   左转  直走  右转  后转

    基准数组下标的变化顺序:   1       2      3      0

    第二种情况(rule = -1,即右转优先)

    statu = 1(面向北方)

    遇到路时的选择顺序:   转  直走  左转  后转

    基准数组下标的变化顺序:   2       1      0      3

    statu = 0(面向西方,此时北方为右边)

    遇到路时的选择顺序:   右转  直走  左转  后转

    基准数组下标的变化顺序:   1       0      3      2

    statu = 3(面向南方,此时西方为右边)

    遇到路时的选择顺序:   右转  直走  左转  后转

    基准数组下标的变化顺序:   0       3      2      1

    statu = 2(面向东方,此时南方为右边)

    遇到路时的选择顺序:   右转  直走  左转  后转

    基准数组下标的变化顺序:   3       2      1      0

    大体的看上去,变化似乎没有规律可循,这样会复杂化程序,仔细找找,发现还是有规律的。

    左转时(rule = 1)

    statu = 1  -> 0 1 2 3

    statu = 2  -> 1 2 3 0

    statu = 3  -> 2 3 0 1

    statu = 0  -> 3 0 1 2

    可以看出后一个数等于前一个数加1对4取模。

    右转时(rule = -1)

    statu = 1  -> 2 1 0 3

    statu = 0  -> 1 0 3 2

    statu = 3  -> 0 3 2 1

    statu = 2  -> 3 2 1 0

    可以看出后一个数等于前一个数减1对4取模。

    可以找到一个对应关系,使得 statu 和 rule确定后,第一个下标顺序 i 也会确定 i = (statu - rule + 4) % 4, 随后加1或者减1,循环变化四次就可以了。

     for( i = (statu + 4 - rule) % 4 ;  ;  i %= 4){

      i +=rule + 4;(rule 为1, 每次加1, rule为-1,每次减1, 加4是为了变负为正,继续循环)

    }

    上述关系就可以实现当statu 和 rule确定后,其转动的数组下标顺序也会一一对应。

    代码:

      1 #include <iostream>
      2 #include <cmath>
      3 #include <cstdio>
      4 #include <cstring>
      5 #include <cstdlib>
      6 #include <stack>
      7 #include <queue>
      8 #include <vector>
      9 #include <algorithm>
     10 #include <string>
     11 #define mearv(a, b) memset(a, b, sizeof(a))
     12 #define mestrc(a, b, c) memset(&(a), b, sizeof(c))
     13 
     14 typedef long long LL;
     15 using namespace std;
     16 const int MAXN = 40;
     17 int map[MAXN + 7][MAXN + 7];
     18 int w, h;
     19 int stX, stY, edX, edY; //分别代表‘S’和‘E’的坐标
     20 const int TURNLEFT = 1, TURNRIGHT = -1; //rule = TURNLEFT 则以左转为优先 rule = TURNRIGHT 则以右转为优先
     21 const int DOWN = 3, UP = 1, LEFT = 0, RIGHT = 2;//statu (= DOWN 面向北方) (= UP 面向南方) (= LEFt 面向西方) (= RIGHT 面向东方)
     22 const int stepX[] = {0, -1, 0, 1}; // 当面向北方时的 左、上、右、下 变换
     23 const int stepY[] = {-1, 0, 1, 0};
     24 int ans;
     25 int ok;
     26 
     27 void DFS(int x, int y, int status, int rule) {//当前位于坐标(x,y)处, 面向status 优先选择为 rule 利用DFS求左转步数和右转步数
     28     if(ok) return;
     29     if(x == edX && y == edY){ //到达出口
     30         ok = 1;
     31         return;
     32     }
     33     else {
     34         for(int i = (status + 4 - rule) % 4, j = 0; j < 4; i %= 4, j++) {//当前方为status,优先选择为 rule时,所考虑的四个方向的顺序
     35             int nex = x + stepX[i], ney = y + stepY[i];
     36             if(map[nex][ney] == '.' || map[nex][ney] == 'E') {//是否可以走
     37                 ++ans;
     38                 status = i;//每走一步,需要更新当前的方位,当前的方位和之前一步的方位相同
     39                 DFS(nex, ney, status, rule);
     40                 if(ok)return;
     41             }
     42             i += rule + 4; //i有可能为负数
     43         }
     44     }
     45 }
     46 
     47 typedef struct Point{int x; int y; int sp;}point; //走到坐标为( x, y)的地方的步数为 sp
     48 void BFS(int stx, int sty) {//利用BFS求最短路径
     49     queue<point> Qu;
     50     point st;
     51     st.x = stx; st.y = sty, st.sp = 1;
     52     Qu.push(st);//起点入队
     53     while(!Qu.empty()) {
     54         point tp = Qu.front();//选择当前扩展节点为队首元素
     55         if(tp.x == edX && tp.y == edY) {//到达出口
     56             ans = tp.sp;
     57             break;
     58         }
     59         Qu.pop();
     60         for(int i = 0; i < 4; i++) {//判断周围的4个邻接点
     61             point nex;
     62             nex.x = tp.x + stepX[i], nex.y = tp.y + stepY[i], nex.sp = tp.sp + 1;//到子节点的步数等于到父节点的步数加1
     63             if(map[nex.x][nex.y] == '.' || map[nex.x][nex.y] == 'E'){
     64                 Qu.push(nex);
     65                 map[nex.x][nex.y] = '$';//已走过标记,不能再走
     66             }
     67         }
     68     }
     69     
     70 }
     71 
     72 int main() {
     73     //freopen("input", "r", stdin);
     74     //freopen("output", "w", stdout);
     75     int T;
     76     scanf("%d", &T);
     77     while(T--){
     78         scanf("%d%d", &w, &h);
     79         mearv(map, 0);
     80         stX = stY = edX = edY = -1;
     81         for(int i = 1; i <= h; i++) {
     82             getchar();
     83             for(int j = 1; j <= w; j++) {
     84                 scanf("%c", &map[i][j]);
     85                 if(map[i][j] == 'S') stX = i, stY = j;
     86                 if(map[i][j] == 'E') edX = i, edY = j;
     87             }
     88         }
     89         int statu = -1;
     90         //判断刚开始的面向方位
     91         if(stX == 1) statu = DOWN;
     92         if(stX == h) statu = UP;
     93         if(stY == 1) statu = LEFT;
     94         if(stY == w) statu = RIGHT;
     95         int rule = 0;
     96     
     97         rule = TURNLEFT;//以左转优先
     98         ans = 1, ok = 0;
     99         DFS(stX, stY, statu, rule);//求解
    100         printf("%d ", ans);
    101 
    102         rule = TURNRIGHT;//以右转优先
    103         ans = 1; ok = 0;
    104         DFS(stX, stY, statu, rule);    
    105         printf("%d ", ans);
    106 
    107         ans = 0;        //最短路优先
    108         BFS(stX, stY);
    109         printf("%d
    ", ans);
    110     }
    111     return 0;
    112 }
  • 相关阅读:
    转:孙振耀谈人生(推荐)
    自绘按钮的实现
    数据结构知识
    Direct Show采集图像实例
    视觉跟踪
    改变对话框控件的颜色
    笔试题
    CBitmapButton的使用
    Rotor (SSCLI) 2.0 登场!
    Under the hood: 从Win32 SEH到CLI异常处理模型
  • 原文地址:https://www.cnblogs.com/Ash-ly/p/5719336.html
Copyright © 2011-2022 走看看