zoukankan      html  css  js  c++  java
  • win10 下的YOLOv3 训练 wider_face 数据集检测人脸

    1、数据集下载

    (1)wider_face 数据集网址为 http://shuoyang1213.me/WIDERFACE/index.html

      

      下载以上几项文件(这里推荐 google Drive 百度云在没有会员的情况下,下载太慢)

    (2)将文件解压到各自独立的文件夹

      

      

    2、数据集简介

      WIDER FACE 数据集是一个人脸检测基准(benchmark)数据集,图片选取自 WIDER(Web Image Dataset for Event Recognition) 数据集。图片数 32,203 张,人脸数 393,703 个,在大小(scale)、位置(pose)、遮挡(occlusion)等不同形式中,人脸是高度变换的。WIDER FACE 数据集是基于61个事件类别,每个事件类别,随机选取训练40%、验证10%、测试50%。训练和测试含有边框(bounding box)真值(ground truth),而验证不含。

      这里主要使用训练集和验证集,他们对应的标签文件分别为 wider_face_split/wider_face_train_bbx_gt.txt  和  wider_face_split/wider_face_val_bbx_gt.txt 

      在 wider_face_train_bbx_gt.txt  文件中  

      数据如下所示:

    0--Parade/0_Parade_marchingband_1_849.jpg
    1
    449 330 122 149 0 0 0 0 0 0

      第一行代表图片路径

      第二行是图片中目标个数(人脸个数)

      第三行是具体的图片中人脸标注的相关参数(具体含义可以在 readme.txt 中看到)

         从左到右的含义分别是 x1, y1, w, h, blur, expression, illumination, invalid, occlusion, pose

      (1)x1, y1, w, h, 分别代表 左下点坐标 及宽长

      (2)blur:模糊程度,0——> 清晰 ,1——> 一般模糊 , 2——> 严重模糊

      (3)expression: 表情 0——> 正常 , 1——> 夸张

      (4)illumination:光源(应该是曝光程度)0——> 正常 , 1——>极度

      (5)occlusion:遮挡  0——> 没有遮挡 , 1——> 部分遮挡 , 2——> 严重遮挡

      (6)pose: 姿势 0——> 正常姿势 , 1——非正常姿势

      (7)invalid: 无效图片 0——否, 1——> 是  

    3、数据集转换

      YOLO v3 需要的 标签格式为

    0 0.498046875 0.292057761732852 0.119140625 0.1075812274368231  #type  x y w h

     从左到右的含义分别为 目标类型 (这里只有一种类型,所以都是0 ) 目标框中心点的(x,y)坐标  目标框的宽度和高度   (这里的数据都是单位数据 即 x—— 中心点实际x / 图片宽度 , y—— 中心点实际y / 图片高度)

     这里可以直接把 wider_face 标签转成 yolo 标签,也可以先转成 voc 格式标签再转成 yolo 标签。考虑到官方有将VOC 格式转成 yolo 格式的代码 voc_label.py 于是先转成 VOC 格式 的标注

    (1)转成VOC 格式

    # -*- coding: utf-8 -*-
    
    import shutil
    import random
    import os
    import string
    from skimage import io
    
    headstr = """
    <annotation>
        <folder>VOC2007</folder>
        <filename>%06d.jpg</filename>
        <source>
            <database>My Database</database>
            <annotation>PASCAL VOC2007</annotation>
            <image>flickr</image>
            <flickrid>NULL</flickrid>
        </source>
        <owner>
            <flickrid>NULL</flickrid>
            <name>company</name>
        </owner>
        <size>
            <width>%d</width>
            <height>%d</height>
            <depth>%d</depth>
        </size>
        <segmented>0</segmented>
    """
    objstr = """
        <object>
            <name>%s</name>
            <pose>Unspecified</pose>
            <truncated>0</truncated>
            <difficult>0</difficult>
            <bndbox>
                <xmin>%d</xmin>
                <ymin>%d</ymin>
                <xmax>%d</xmax>
                <ymax>%d</ymax>
            </bndbox>
        </object>
    """
    
    tailstr = '''
    </annotation>
    '''
    
    
    
    
    def writexml(idx, head, bbxes, tail):
        filename = ("Annotations/%06d.xml" % (idx))
        f = open(filename, "w")
        f.write(head)
        for bbx in bbxes:
            f.write(objstr % ('face', bbx[0], bbx[1], bbx[0] + bbx[2], bbx[1] + bbx[3]))
        f.write(tail)
        f.close()
    
    
    def clear_dir():
        if shutil.os.path.exists(('Annotations')):
            shutil.rmtree(('Annotations'))
        if shutil.os.path.exists(('ImageSets')):
            shutil.rmtree(('ImageSets'))
        if shutil.os.path.exists(('JPEGImages')):
            shutil.rmtree(('JPEGImages'))
    
        shutil.os.mkdir(('Annotations'))
        shutil.os.makedirs(('ImageSets/Main'))
        shutil.os.mkdir(('JPEGImages'))
    
    
    def excute_datasets(idx, datatype):
    
        f = open(('ImageSets/Main/' + datatype + '.txt'), 'a')
        f_bbx = open(('wider_face_split/wider_face_' + datatype + '_bbx_gt.txt'), 'r')
    
        while True:
            filename = f_bbx.readline().strip('
    ')
    
            if not filename:
                break
    
    
            im = io.imread(('WIDER_' + datatype + '/images/' + filename))
            head = headstr % (idx, im.shape[1], im.shape[0], im.shape[2])
            nums = f_bbx.readline().strip('
    ')
            bbxes = []
            if nums=='0':
                bbx_info= f_bbx.readline()
                continue
            for ind in range(int(nums)):
                bbx_info = f_bbx.readline().strip(' 
    ').split(' ')
                bbx = [int(bbx_info[i]) for i in range(len(bbx_info))]
                # x1, y1, w, h, blur, expression, illumination, invalid, occlusion, pose
                if bbx[7] == 0:
                    bbxes.append(bbx)
            writexml(idx, head, bbxes, tailstr)
            shutil.copyfile(('WIDER_' + datatype + '/images/' + filename), ('JPEGImages/%06d.jpg' % (idx)))
            f.write('%06d
    ' % (idx))
            idx += 1
        f.close()
        f_bbx.close()
        return idx
    
    
    if __name__ == '__main__':
        clear_dir()
        idx = 1
        idx = excute_datasets(idx, 'train')
        idx = excute_datasets(idx, 'val')
        print('Complete...')
    wider_face 转成VOC

      目录格式为

      

      (2)VOC 格式转成 yolo 需要的格式

      将 上述步骤生成的 三个文件夹 即 Annotations ImageSets JPEGImages 放到之前编译好的 darknet-masteruilddarknetx64datavocVOCdevkitVOCface 目录中 

       将voc_label.py 放入  darknet-masteruilddarknetx64datavoc 目录下 

      打开 voc_label.py 文件 

      将7 、8左右的代码改成如下所示: 

    # sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007_test', 'test')]#
    sets=[('face', 'train'), ('face', 'val')]#
    #
    # classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    
    classes = ["face"]
    import xml.etree.ElementTree as ET
    import pickle
    import os
    from os import listdir, getcwd
    from os.path import join
    
    # sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007_test', 'test')]#
    sets=[('face', 'train'), ('face', 'val')]#
    #
    # classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
    
    classes = ["face"]
    
    
    def convert(size, box):
        dw = 1./size[0]
        dh = 1./size[1]
        x = (box[0] + box[1])/2.0
        y = (box[2] + box[3])/2.0
        w = box[1] - box[0]
        h = box[3] - box[2]
        x = x*dw
        w = w*dw
        y = y*dh
        h = h*dh
        return (x,y,w,h)
    
    def convert_annotation(year, image_id):
        in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
        out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
        tree=ET.parse(in_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)
    
        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
            bb = convert((w,h), b)
            out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '
    ')
    
    
    
    if __name__=='__main__':
        wd = getcwd()
        for year, image_set in sets:
            if not os.path.exists('VOCdevkit/VOC%s/labels/' % (year)):
                os.makedirs('VOCdevkit/VOC%s/labels/' % (year))
            image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split()
            list_file = open('%s_%s.txt' % (year, image_set), 'w')
            for image_id in image_ids:
                list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg
    ' % (wd, year, image_id))
                convert_annotation(year, image_id)
            list_file.close()
    VOC_label.py

      运行 voc_label.py 结束后 将会在 voc 目录下生成 face_train.txt 和 face_val.txt

      至此前期数据准备工作完成。

    4、修改配置文件

    (1)配置 cfg 文件

      将 darknet-masteruilddarknetx64cfgyolov3.cfg  文件 复制一份 并重命名为 yolov3-obj.cfg 

      打开 yolov3-obj.cfg 将 第三行第四行注释掉 将第七行和第八行注释取消

      将 batch 设为 batch=64   (第6行)

      将 subdivisions 设为 subdivisions=8 (第7行)

      如果显卡内存较小(即后面运行时报 out of memory 的错时) 可以 将 batch 改成 32 16 8 等 (保证 batch 是 subdivisions  的整数倍),同时取消多尺度训练 即 设置 random = 0 ( 第 615、701、788 行 )

       将 max_batches 改为 max_batches = 2000 (第20行)max_batches 的数量为检测的目标数 * 2000 

      将 steps 改为 steps=1600,1800 (第22行)steps =max_batches *0.8 ,0.9

      将 classes 改为 classes =1  (第 610 、696、783 行)

      将 filters 改为 filters =18 (只改三个 yolo 层的上一层的 filters 即 第 603、689 、776 行 )

     (2)配置 obj.data 和 obj.names 文件

       可以 复制 voc.data 和obj.names 文件并重命名,也可以自己新建两个文件

      obj.data 文件中 内容为

    classes= 1
    train  = data/voc/face_train.txt
    valid  = data/voc/face_val.txt
    #difficult = data/difficult_2007_test.txt
    names = data/obj.names
    backup = backup/

      obj.names 的内容为 face (只有这一行)

    face

    (3)配置 darknet-masterMakefile 文件 (在有 GPU 和 CUDNN 的情况下)

      将第 1 行 GPU=0 改成 GPU=1

      将第 2 行 CUDNN=0 改成 CUDNN=1

      将第 58 行 改为 NVCC=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/bin (自己的cuda 安装目录)

      将 88 —— 108 行的内容改成如下所示 (即 将对应目录 改成)

    ifeq ($(GPU), 1)
    COMMON+= -DGPU -I/C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/include
    CFLAGS+= -DGPU
    ifeq ($(OS),Darwin) #MAC
    LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
    else
    LDFLAGS+= -L/C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64 -lcuda -lcudart -lcublas -lcurand
    endif
    endif
    
    ifeq ($(CUDNN), 1)
    COMMON+= -DCUDNN
    ifeq ($(OS),Darwin) #MAC
    CFLAGS+= -DCUDNN -I/usr/local/cuda/include
    LDFLAGS+= -L/usr/local/cuda/lib -lcudnn
    else
    CFLAGS+= -DCUDNN -IC:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/include
    LDFLAGS+= -L/C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v10.0/lib/x64 -lcudnn
    endif
    endif

    (4)下载 预训练文件 https://pjreddie.com/media/files/darknet53.conv.74  放到 darknet-masteruilddarknetx64 目录中

    5、开始训练 

      在  darknet-masteruilddarknetx64 目录下打开 powershell 

      运行命令 ./darknet.exe detector train data/obj.data cfg/yolov3-obj.cfg darknet53.conv.74  开始训练

      如果报 CUDA Error: out of memory 

       则 将 batch 改成 32 16 8 等 (保证 batch 是 subdivisions  的整数倍),同时取消多尺度训练 即 设置 random = 0 ( 第 615、701、788 行 ) (我是都改成 8 才可以)

    6、训练过程中的 输出参数解释

       

      表示所有训练图片中的一个批次(batch),批次大小的划分根据在cfg/yolov3-obj.cfg中设定的, 批次大小的划分根据我们在 .cfg 文件中设置的subdivisions参数。在我使用的 .cfg 文件中 batch = 8 ,subdivision = 8,所以在训练输出中,训练迭代包含了8组(8组 Region 82, Region 94, Region 106),每组又包含了1张图片,跟设定的batch和subdivision的值一致。( 也就是说每轮迭代会从所有训练集里随机抽取 batch = 8 个样本参与训练,所有这些 batch 个样本又被均分为 subdivision = 8 次送入网络参与训练,以减轻内存占用的压力)

     

      (1) Region 82 ,Region 94 , Region 106 代表三个 训练尺度 82 为最大尺度 用来预测较小目标, 106 为最小尺度  用来预测较大目标,94  为 中间尺度  在每个尺度 中的数据 会出现大量的 nan 数据 是正常现象,只有迭代的 avg loss 出现 nan 值才说明训练出错。

      (2)Avg IOU:表示在当前subdivision内的图片的平均IOU,代表预测的矩形框和真实目标的交并比 越接近1 越好

      (3)Class:标注物体分类的正确率, 期望该值趋近于1;

      (4)Obj:越接近 1 越好

      (5)No Obj:越来越小,但不为 0

      (6).5R:以IOU=0.5为阈值时候的recall; recall = 检出的正样本/实际的正样本

      (7).75R: 以IOU=0.75为阈值时候的recall; recall = 检出的正样本/实际的正样本

      (8)count:count后的值表示所有的当前subdivision图片(本例中一张)中包含正样本的图片的数量。

      (9)最后一行

        11:指当前训练的迭代次数

        640.579651:总体的 loss

        647.46337 avg loss :平均的loss  在这个数字到达 0.05-3 之间 可以停止训练(当该数字 变化趋于平稳,波动不大时停止 )

        0.00000 rate: 代表当前的学习率,在.cfg文件中定义了它的初始值和调整策略。刚开始出现的值很有可能时 0 是正常情况

           3.38700 seconds:当前批次的训练时间

        88 images:代表已参与训练的图片的数量

    7、训练完成与测试

     本次训练用的是破显卡(750 ti),训练不到两小时就我就停下了 avg loss 3.8 左右,测试下训练效果

     将cfg 文件的 batch  和 subdivisions  换成 1 

     打开 powershell

     输入命令 ./darknet.exe detector test data/obj.data cfg/yolov3-obj.cfg  backup/yolov3-obj_last.weights -i 0 -thresh 0.25 

     放几张从网上随便找的照片,测试结果。初步结果还可以

     

  • 相关阅读:
    water——小根堆+BFS
    P5930 [POI1999]降水/SP212 WATER
    Blue Mary的战役地图——Hash表
    Antisymmetry(反对称)——Manacher
    数论基础
    可持久化数据结构(线段树,trie树)
    20200725模拟赛5题解
    vscode 如何创建git 新分支
    mysql 把一个数据库中的表数据复制到另一个数据库中
    shrio中的用法以及配置
  • 原文地址:https://www.cnblogs.com/Assist/p/11091501.html
Copyright © 2011-2022 走看看