zoukankan      html  css  js  c++  java
  • 【LeetCode】152. Maximum Product Subarray

    题目:  

    Find the contiguous subarray within an array (containing at least one number) which has the largest product.

    For example, given the array [2,3,-2,4],
    the contiguous subarray [2,3] has the largest product = 6.

    题解:

      先暴力解,遍历所有组合,更新最大值。很显然得超时。

    Solution 1 (TLE)

    class Solution {
    public:
        int maxProduct(vector<int>& nums) {
            int n = nums.size(), mproduct = nums[0];
            for (int i = 0; i < n; ++i) {
                int tmp = nums[i];
                mproduct = max(mproduct, tmp);
                for (int j = i + 1; j < n; ++j) {
                    tmp = tmp * nums[j];
                    mproduct = max(mproduct, tmp);
                }
            }
            return mproduct;
        }
    };

      Besides keeping track of the largest product, we also need to keep track of the smallest product. Why? The smallest product, which is the largest in the negative sense could become the maximum when being multiplied by a negative number. (from here)

      Let us denote that:

    f(k) = Largest product subarray, from index 0 up to k.

       Similarly,

    g(k) = Smallest product subarray, from index 0 up to k.

       Then,

    f(k) = max( f(k-1) * A[k], A[k], g(k-1) * A[k] )
    g(k) = min( g(k-1) * A[k], A[k], f(k-1) * A[k] )

    Solution 2 ()

    class Solution {
    public:
        int maxProduct(vector<int>& nums) {
            int maxPro = nums[0], minPro = nums[0], result = nums[0], n = nums.size();
            for (int i=1; i<n; i++) {
                int mx = maxPro, mn = minPro;
                maxPro = max(max(nums[i], mx * nums[i]), mn * nums[i]);
                minPro = min(min(nums[i], mx * nums[i]), mn * nums[i]);
                result = max(maxPro, result);
            }
            return result;
        }
    };
    1. Fist we assume there is no zero in the A[]. The answer must be A[0] A[1] .... A[i] OR A[j] *A[j+1] A[n - 1]. (Try to prove yourself)

    2. Then when we have zero in the A[] (assum A[k] == 0). We could see A[0],A[1]...A[k - 1 ] As An Array and A[k + 1] A[k + 2]...A[n-1] is another.(from here)

      The key point of this problem is: there are only two patterns:
    One is "aBcD", and the other is "aBcDe", where I use lowercase to denote a negative number, and use upper case to denote a positive number.
    For the first pattern, the maximum product would be "aBcD"; and for the second pattern, the maximum product would be "max (aBcD, BcDe)". So above solution code is very elegant and efficient. 

    Solution 3 ()

    class Solution {
     // author : s2003zy
     // weibo : http://weibo.com/574433433
     // blog : http://s2003zy.com
     // Time : O(n)
     // Space : O(1)
     public:
        int maxProduct(vector<int>& nums) {
            int ans = INT_MIN, frontProduct = 1, backProduct = 1;
            int n = nums.size();
            for(int i = 0; i < n; ++i) {
               frontProduct *= nums[i];
               backProduct *= nums[n - i - 1];
               ans = max(ans,max(frontProduct,backProduct));
               frontProduct = frontProduct == 0 ? 1 : frontProduct;
               backProduct = backProduct == 0 ? 1 : backProduct;
            }
            return ans;
        }
    };
  • 相关阅读:
    一款JS+CSS实现的无缝平滑图片滚动代码
    2个按钮控制的左右图片滚动特效代码
    JS+CSS控制左右切换鼠标可控的无缝图片滚动代码
    用CSS实现图片水印效果代码
    用鼠标拖动图片的JS代码
    一款实用的JavaScript图片幻灯片代码
    摘自搜狐女人频道的图片切换的JS代码
    JS防PS里的图片拖拉缩放效果代码
    鼠标移至图片后抖动的JS代码
    WINDOWS补丁的多线程下载方法和安装技巧
  • 原文地址:https://www.cnblogs.com/Atanisi/p/6729865.html
Copyright © 2011-2022 走看看