zoukankan      html  css  js  c++  java
  • 【Lintcode】017.Subsets

    题目:

    题解:

    Solution 1 ()

    class Solution {
    public:
        vector<vector<int> > subsets(vector<int> &S) {
            vector<vector<int> > res{{}};
            sort(S.begin(), S.end());
            for (int i = 0; i < S.size(); ++i) {
                int size = res.size();
                for (int j = 0; j < size; ++j) {
                    vector<int> instance = res[j];
                    instance.push_back(S[i]);
                    res.push_back(instance);
                    }
            }
            return res;
        }
    };

    Solution 1.2

    class Solution {
    public:
        vector<vector<int> > subsets(vector<int> &S) {
        vector<vector<int> > res(1, vector<int>());
        sort(S.begin(), S.end());
        
        for (int i = 0; i < S.size(); i++) {
            int n = res.size();
            for (int j = 0; j < n; j++) {
                res.push_back(res[j]);
                res.back().push_back(S[i]);
            }
        }
    
        return res;
        }
    };

    Solution 2 ()

    class Solution {
    public:
        vector<vector<int> > subsets(vector<int> &S) {
            vector<vector<int> > res;
            vector<int> v;
            sort(S.begin(), S.end());
            dfs(res, S, v, 0);
            return res;
        }
        void dfs(vector<vector<int> > &res, vector<int> S, vector<int> &v, int pos) {
            res.push_back(v);
            for (int i = pos; i < S.size(); ++i) {
                v.push_back(S[i]);
                dfs(res, S, v, i + 1);
                v.pop_back();
            }
        }
    };

    Bit Manipulation

    This is the most clever solution that I have seen. The idea is that to give all the possible subsets, we just need to exhaust all the possible combinations of the numbers. And each number has only two possibilities: either in or not in a subset. And this can be represented using a bit.

    There is also another a way to visualize this idea. That is, if we use the above example, 1 appears once in every two consecutive subsets, 2 appears twice in every four consecutive subsets, and 3 appears four times in every eight subsets, shown in the following (initially the 8 subsets are all empty):

    [], [], [], [], [], [], [], []

    [], [1], [], [1], [], [1], [], [1]

    [], [1], [2], [1, 2], [], [1], [2], [1, 2]

    [], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]

    Solution 3 ()

    class Solution {
    public:
        vector<vector<int>> subsets(vector<int>& S) {
            sort(S.begin(), S.end());
            int num_subset = pow(2, S.size()); 
            vector<vector<int> > res(num_subset, vector<int>());
    
            for (int i = 0; i < S.size(); i++) {
                for (int j = 0; j < num_subset; j++) {
                    if ((j >> i) & 1) {
                        res[j].push_back(S[i]);
                    }
                }
            }
            return res;  
        }
    };
  • 相关阅读:
    Network | DNS
    Network | Cookie and Session
    Network | HTTP protocol
    全源最短路径
    最小生成树
    最小生成树
    10. Regular Expression Matching *HARD*
    4. Median of Two Sorted Arrays *HARD* -- 查找两个排序数组的中位数(寻找两个排序数组中第k大的数)
    44. Wildcard Matching *HARD*
    43. Multiply Strings 字符串表示的大数乘法
  • 原文地址:https://www.cnblogs.com/Atanisi/p/6869189.html
Copyright © 2011-2022 走看看