zoukankan      html  css  js  c++  java
  • 什么是二进制补码

    轉自:http://zhidao.baidu.com/question/4319911.html
    数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.

    数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为

    (-127~-0 +0~127)共256个.

    ? 有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits

    ( 1 )?10-? ( 1 )10?=? ( 1 )10?+ ( -1 )10?= ?( 0 )10

    (00000001)原?+ (10000001)原?= (10000010)原?= ( -2 )?显然不正确.

    ? 因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:

    ?( 1 )10?-? ( 1 )?10=? ( 1 )?10+ ( -1 )?10= ?( 0 )10

    ?(00000001)?反+ (11111110)反?=? (11111111)反?=? ( -0 ) ?有问题.

    ( 1 )10?-? ( 2)10?=? ( 1 )10?+ ( -2 )10?= ?( -1 )10

    (00000001)?反+ (11111101)反?=? (11111110)反?=? ( -1 )?正确

    问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).

    于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:

    (-128~0~127)共256个.

    注意:(-128)没有相对应的原码和反码, (-128) = (10000000) ?补码的加减运算如下:

    ( 1 )?10-? ( 1 )?10=? ( 1 )10?+ ( -1 )10?= ?( 0 )10

    (00000001)补?+ (11111111)补?=? (00000000)补?= ( 0 )?正确

    ( 1 )?10-? ( 2)?10=? ( 1 )10?+ ( -2 )10?= ?( -1 )10

    (00000001)?补+ (11111110)?补=? (11111111)补?= ( -1 ) ?正确

    ?? 所以补码的设计目的是:

    ???? ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.

    ⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计

    ? 所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。看了上面这些大家应该对原码、反码、补码有了新的认识了吧!

    申明

    非源创博文中的内容均收集自网上,若有侵权之处,请及时联络,我会在第一时间内删除.再次说声抱歉!!!

    博文欢迎转载,但请给出原文连接。

  • 相关阅读:
    WIN10安装python及numpy等第三方库以及卸载
    学习Python一年,基础忘记了,看看面试题回忆回议,Python面试题No3
    包含了 java环境,mysql,nginx,redis docker 镜像
    Docker的镜像制作与整套项目一键打包部署
    RedHat Enterprise Linux 5.8 升级openssl
    RedHat Enterprise Linux 5.8 升级openssl
    RedHat Enterprise Linux 5.8 升级openssl
    log4net进阶手札(二):基本用法
    log4net进阶手札(二):基本用法
    log4net进阶手札(二):基本用法
  • 原文地址:https://www.cnblogs.com/Athrun/p/934843.html
Copyright © 2011-2022 走看看