zoukankan      html  css  js  c++  java
  • bzoj violet系列 (2708~2725)

    cbh大爷说:写博客不能弃坑。

    orz cbh

    那我就来更新博客了。

    violet这个系列的题好神啊……出题人好劲啊……

    ……怎么最近都在理性愉悦啊……

    另外bzoj400题纪念~

    2708: [Violet 1]木偶

    首先先对所有木偶按照特征值排序

    考虑一种木偶与绳索配对的方法:

    木偶(1)与绳索(k+1)配对,木偶(2)与绳索(k+2)配对……木偶(n-k)与绳索(n)配对。

    当木偶(n-k+1)无法与绳索(k)配对时,这样的配对方法能扔掉(k)个木偶。

    容易证明,最优的配对方式一定可以分成许多段,每段内用这种方式进行配对。

    于是可以dp。

    首先令(g_{l,r})表示l~r之间用那种方式配对最多能扔掉多少个木偶,(g_{l,r})可以通过枚举(k)算出,时间复杂度(O(n^3))

    令(f_i)表示到1~i之间能扔掉多少个木偶,那么有(f_i=maxleft { f_j+g_{j+1,i} ight })。直接dp,时间复杂度(O(n^2))

    时间复杂度为(O(n^2))

    #include <bits/stdc++.h>
    #define N 100
    using namespace std;
    int n;
    int f[N], ai[N];
    int g[N][N];
    int main()
    {
        while (scanf("%d", &n) !=EOF)
        {
            for (int i = 1; i <= n; ++ i) scanf("%d", &ai[i]);
            sort(ai + 1, ai + n + 1);
            for (int i = 1; i <= n; ++ i)
                for (int j = i; j <= n; ++ j)
                {
                    int bo = 1;
                    for (int k = 1; k <= j - i + 1; ++ k)
                    {
                        int p, q;
                        for (p = i, q = i + k; q <= j; ++ p, ++ q)
                            if (ai[q] - ai[p] > 1) bo = 0;
                        if (abs(ai[p] - ai[i + k - 1]) <= 1) bo = 0;
                        if (!bo) {g[i][j] = k - 1; break;}
                    }
                    if (bo) g[i][j] = j - i + 1;
                    //if (g[i][j] != cal(i, j))
                    //  puts("haha");
                }
            for (int i = 1; i <= n; ++ i) f[i] = 0;
            for (int i = 1; i <= n; ++ i)
                for (int j = 0; j < i; ++ j)
                    f[i] = max(f[i], f[j] + g[j + 1][i]);
            printf("%d
    ", f[n]);
        }
    }
    
    View Code

    2709: [Violet 1]迷宫花园

    二分答案,判断最短路,期间因为eps的问题wa了许多发QAQ

    时间复杂度(O(RClogRClogv))

    #include <bits/stdc++.h>
    #define INF 1000000000
    using namespace std;
    int r, c;
    double ll;
    char mp[110][110];
    int get(int rr, int cc)
    {
        return (rr - 1) * c + cc;
    }
    int dr[4] = {1, -1, 0, 0}, dc[4] = {0, 0, 1, -1};
    vector <int> bi[10010];
    vector <double> ci[10010];
    int s, e;
    void build(int a, int b, double c)
    {
        bi[a].push_back(b); ci[a].push_back(c);
        bi[b].push_back(a); ci[b].push_back(c);
    }
    struct node
    {
        int t; double l;
    };
    bool operator < (node a, node b) {return a.l > b.l;}
    priority_queue <node> H;
    int vis[10010]; double dis[10010];
    int main()
    {
        int T;
        cin >> T;
        while (T --)
        {
            cin >> ll >> r >> c;
            for (int i = 1; i <= r; i++)  
            {  
                char cc;  
                scanf("%c", &cc);  
                while (cc != '
    ') scanf("%c", &cc);  
                for (int j = 1; j <= c; j++)  
                {  
                    scanf("%c", &cc);  
                    while (cc == '
    ') scanf("%c",&cc);
                    mp[i][j] = cc;
                    if (cc=='S') s = get(i, j);
                    if (cc=='E') e = get(i, j);
                }  
            }  
            {
                double lb = 0, rb = 10;
                while (rb - lb > 0.0000001)
                {
                    double md = (lb + rb) / 2;
                    for (int i = 1; i <= r * c; ++ i) bi[i].clear(), ci[i].clear();
                    for (int i = 1; i <= r; ++ i)
                        for (int j = 1; j <= c; ++ j)
                            for (int d = 0; d < 4; ++ d)
                                if (mp[i][j] != '#' && mp[i + dr[d]][j + dc[d]] != '#')
                                    build(get(i, j), get(i + dr[d], j + dc[d]), (d >= 2? 1: md));
                    for (int i = 1; i <= r * c; ++ i)
                        dis[i] = INF, vis[i] = 0;
                    while (!H.empty()) H.pop();
                    dis[s] = 0,
                    H.push((node){s, 0});
                    while (!H.empty())
                    {
                        int hd;
                        do hd = H.top().t, H.pop();
                        while (vis[hd] && !H.empty()); 
                        if (!vis[hd]) vis[hd] = 1;
                        else break;
                        for (int i = 0; i < bi[hd].size(); ++ i)
                            if (dis[hd] + ci[hd][i] < dis[bi[hd][i]])
                            {
                                dis[bi[hd][i]] = dis[hd] + ci[hd][i];
                                H.push((node){bi[hd][i], dis[bi[hd][i]]});
                            }
                    }
                    if (dis[e] > ll) rb = md;
                    else lb = md;
                }
                printf("%.5lf
    ", lb);
            }
                                          
        }
    }
    
    View Code

    2710: [Violet 1]追风者

    好神的题啊,我不会做QAQ

    2711: [Violet 2]After 17

    题目要求最小化(sum_{i=1}^{n}sum_{j=i+1}^{n}x_i x_j + y_i y_j),于是(x)和(y)可以分别考虑。

    (sum_{i=1}^{n}sum_{j=i+1}^{n}x_i x_j = frac{(sum_{i=1}^{n}x_i)^2-sum_{i=1}^{n}x_i^2}{2})

    通过归纳法(?)可以证明当(sum abs(x_i))最大时最优。因此(sum_{i=1}^{n}x_i)^2)是定值,于是就可以用dp去求(sum_{i=1}^{n}x_i^2)的最大值。

    时间复杂度(O(nl))

    #include <bits/stdc++.h>
    using namespace std;
    #define N 210
    #define M 40010
    int f[N][M * 2];
    int n;
    int xi[N], yi[N];
    double ans;
    void solve(int d[])
    {
        for (int i = 0; i <= n; ++ i)
            for (int j = -M; j < M; ++ j)
                f[i][j + M] = 0;
        f[0][M] = 1;
        for (int i = 0; i < n; ++ i)
            for (int j = -M; j < M; ++ j)
                if (f[i][j + M])
                    f[i + 1][j + d[i + 1] + M] = f[i + 1][j - d[i + 1] + M] = 1;
        for (int i = 0; i < M; ++ i)
            if (f[n][M + i] || f[n][M - i])
            {
                ans += pow(i, 2);
                break;
            }
    }
    int main()
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; ++ i)
        {
            scanf("%d%d", &xi[i], &yi[i]);
            ans -= pow(xi[i], 2) + pow(yi[i], 2);
        }
        solve(xi);
        solve(yi);
        printf("%.2lf", ans / 2);
    }
    
    View Code

    2712: [Violet 2]棒球

    第二道神题啊QAQ

    考虑将边界化成分数,为什么要化成分数呢?因为精度问题。

    化成分数后就转成了这么个问题:求分数(frac{p}{q}),最小化(p),(q),使得(frac{lp}{lq} < frac{p}{q} leq  frac{rp}{rq})

    若(frac{p}{q} = frac{rp}{rq}),那么(q=frac{rq}{gcd(rp, rq)})。

    剩下得就是(frac{lp}{lq} < frac{p}{q} < frac{rp}{rq})

    考虑如下做法

      若有一个整数(p)满足(frac{lp}{lq} < p < frac{rp}{rq}),那么就输出(p)

      如果(lp<lq)且(rp<rq),则去递归求(frac{rq}{rp} < frac{p'}{q'} < frac{lq}{lp}),那么原问题得解就是(frac{q'}{p'})

      否则,令(k=left lfloor frac{lp}{lq} ight floor),递归求(frac{rq - k * rp}{rp} < frac{p'}{q'} < frac{lq - k * lp}{lp}),那么原问题得解就是(frac{p' + k * q'}{q'})

    算法的正确性是显然的。递归时新问题的最优解(frac{p'}{q'})一定对应原问题的最优解(frac{p}{q})。如果前者对应的不是后者的最优解,那么就一定可以通过原问题的最优解构造出一个新问题的解(frac{p''}{q''}),使得这个解比(frac{p'}{q'})更优。

    注意边界问题

    时间复杂度(O(r))

    #include <bits/stdc++.h>
    #define LL long long
    #define pL pair <LL, LL>
    using namespace std;
    int n; LL r;
    pL solve(LL lu, LL ld, LL ru, LL rd)
    {
        LL x = lu / ld + 1;
        if (x * rd < ru) return pL(x, 1);
        if (!lu) return pL(1, rd / ru + 1);
        if (lu <= ld && ru <= rd) 
            {pL nw = solve(rd, ru, ld, lu); return pL(nw.second, nw.first);}
        x = lu / ld;
        pL nw = solve(lu - ld * x, ld, ru - rd * x, rd);
        nw.first += nw.second * x;
        return nw;
    }
    int main()
    {
        while (scanf("%d 0.%lld", &n, &r) == 2)
        {
            if (r == 0) {puts("1"); continue;}
            LL x = 10; while (n --) x *= 10;
            LL lu = r * 10 - 5, ld = x, ru = r * 10 + 5, rd = x;
            for( ; lu % 5 == 0 && ld % 5 == 0; lu /= 5, ld /= 5);
            for( ; ru % 5 == 0 && rd % 5 == 0; ru /= 5, rd /= 5);
            pL ans = solve(lu, ld, ru, rd);
            //printf("%lld %lld
    ", ans.first, ans.second);
            printf("%lld
    ", min(ans.second, ld));
        }
    }
    
    View Code

    2713: [Violet 2]愚蠢的副官

    第三道神题……我dp被卡常数了,极限数据要跑8s……交标程走人

     

    2714: [Violet 3]交替和

    数位dp

    定义一个数的交替和为将该数从高位到低位添加至序列L后,A(L)的值,比如(1101B)的交替和为(-1)

    定义(f_{0,i})表示b进制下,所有可以有前导零的i位数的交替和的和。

    定义(f_{1,i})表示b进制下,所有可以有前导零的i位偶数的交替和减去所有可以有前导零的i位奇数的交替和

    设(n)在(b)进制下有(len)位

    那么答案由两部分组成。第一部分是位数在(1)~(len-1)之间的数,第二部分是位数为(len)的数。

      维护当前要计算的第一个数位对答案的贡献的系数(np)。

      第一部分枚举位数,最高位,用(f)以及(np)计算贡献
      第二部分枚举与n从第几位开始不同,以及这一位选了多少,依然用(f)以及(np)计算贡献

    时间复杂度(O(blogn))

    /**************************************************************
        Problem: 2714
        User: AwD
        Language: C++
        Result: Accepted
        Time:0 ms
        Memory:1296 kb
    ****************************************************************/
     
    #include <bits/stdc++.h>
    #define LL long long
    using namespace std;
    LL b, n;
    LL f[2][100], g[100];
    LL ni[100], nl, ans;
    int main()
    {
        cin >> b >> n;
        g[0] = 1;
        for (LL i = 1, j = 1; j <= n; ++ i, j *= b)
        {
            LL np = 1;
            for (LL k = 0; k < b; ++ k)
                f[0][i] += f[0][i - 1] * -1 + g[i - 1] * k,
                f[1][i] += f[1][i - 1] * -np + (g[i - 1] & 1) * k * np,
                np = np * ((g[i - 1] * i)& 1? -1: 1);
            g[i] = g[i - 1] * b;
        }
        while (n)
        {
            ni[++ nl] = n % b;
            n /= b;
        }
        {
            LL np = 1, s = 0;
            for (LL i = 1; i < nl; ++ i)
            {
                for (LL k = 1; k < b; ++ k)
                    ans += f[i & 1][i - 1] * -np + (i & 1? g[i - 1] & 1: g[i - 1]) * k * np,
                    np = np * ((g[i - 1] * i) & 1? -1: 1);
            }
            //cout << ans << "
    ";
     
            for (LL i = nl; i >= 1; -- i)
            {
                for (LL k = (i == nl); k <= (ni[i] - (i != 1)); ++ k)
                    ans += f[nl & 1][i - 1] * ((nl - i) & 1? 1: -1) * np + (nl & 1? g[i - 1] & 1: g[i - 1]) * (s + ((nl - i) & 1? -1: 1) * k) * np,
                    np = np * ((g[i - 1] * nl) & 1? -1: 1);
                s += ((nl - i) & 1? -1: 1) * ni[i];
            }
            cout << ans << "
    ";
        }
    }
    View Code

    2715: [Violet 3]最优指令

    状压所有状态是否可以出现,简单bfs即可

    时间复杂度(O(2^SC))

    #include <bits/stdc++.h>
    #define N (1 << 17)
    using namespace std;
    int s, c;
    int dis[N], vis[N];
    queue <int> Q;
    int pres[N], prei[N];
    int trans[18][18];
    void dfs(int t)
    {
        if (t != (1 << s) - 1)
        {
            dfs(pres[t]);
            if (prei[t] < 10) printf("%d", prei[t]);
            else printf("%c", prei[t] - 10 + 'a');
        }
    }
    int main()
    {
        scanf("%d%d", &s, &c);
        for (int i = 0; i < s; ++ i)
            for (int j = 0; j < c; ++ j)
                scanf("%d", &trans[i][j]);
        Q.push((1 << s) - 1); vis[(1 << s) - 1] = 1;
        while (!Q.empty())
        {
            int hd = Q.front(); Q.pop();
            for (int i = 0; i < c; ++ i)
            {
                int nw = 0;
                for (int j = 0; j < s; ++ j)
                    if (hd & (1 << j))
                        nw |= (1 << trans[j][i]);
                if (!vis[nw])
                {
                    vis[nw] = 1;
                    dis[nw] = dis[hd] + 1;
                    pres[nw] = hd;
                    prei[nw] = i;
                    Q.push(nw);
                }
            }
        }
        if (!vis[1]) puts("impossible");
        else dfs(1);
    }
    View Code

    2716: [Violet 3]天使玩偶

    裸的k-d树,我的常数写的好挫啊QAQ

    时间复杂度(O((n+m)sqrt{n + m}))

    #include <bits/stdc++.h>
    #define INF 100000000
    #define N 1000100
    using namespace std;
    int n, m;
    struct point {int d[2];};
    struct node 
    {
        int opt, ch[2], si;
        int bd[2][2];
        point mid;
    } tr[N];
    stack <int> S;
    int nw, tmp;
    int comp(point a, point b) {return a.d[nw] < b.d[nw];}
    point ls[N];
    void dfs_dele(int t)
    {
        if (tr[t].ch[0]) dfs_dele(tr[t].ch[0]);
        ls[++ tmp] = tr[t].mid;
        if (tr[t].ch[1]) dfs_dele(tr[t].ch[1]);
        tr[t].ch[0] = tr[t].ch[1] = 0;
        tr[t].opt = tr[t].si = 0;
        S.push(t);
    }
    void update(int t)
    {
        tr[t].bd[0][0] = min(tr[t].mid.d[0], min(tr[tr[t].ch[0]].bd[0][0], tr[tr[t].ch[1]].bd[0][0]));
        tr[t].bd[0][1] = max(tr[t].mid.d[0], max(tr[tr[t].ch[0]].bd[0][1], tr[tr[t].ch[1]].bd[0][1]));
        tr[t].bd[1][0] = min(tr[t].mid.d[1], min(tr[tr[t].ch[0]].bd[1][0], tr[tr[t].ch[1]].bd[1][0]));
        tr[t].bd[1][1] = max(tr[t].mid.d[1], max(tr[tr[t].ch[0]].bd[1][1], tr[tr[t].ch[1]].bd[1][1]));
    }
    int rebuild(int opt, int l, int r)
    {
        nw = opt; sort(ls + l, ls + r + 1, comp);
        int mid = (l + r) / 2;
        int hd = S.top(); S.pop();
        tr[hd].mid = ls[mid];
        tr[hd].opt = opt; tr[hd].si = r - l + 1;
        if (l < mid) tr[hd].ch[0] = rebuild(!opt, l, mid - 1);
        if (mid < r) tr[hd].ch[1] = rebuild(!opt, mid + 1, r);
        update(hd);
        return hd;
    }
    int insert(int opt, int t, point nw)
    {
        if (!t)
        {
            t = S.top(); S.pop();
            tr[t].opt = opt;
            tr[t].si = 1; tr[t].mid = nw;
        }
        else
        {
            int k = tr[t].mid.d[tr[t].opt] < nw.d[tr[t].opt];
            tr[t].si ++;
            tr[t].ch[k] = insert(!opt, tr[t].ch[k], nw);
            if (1.0 * tr[tr[t].ch[k]].si / tr[t].si > 0.7)
            {
                tmp = 0; dfs_dele(t);
                t = rebuild(opt, 1, tmp);
            }
        }
        update(t);
        return t;
    }
    int nowans;
    int dis(point a, point b)
    {
        return abs(a.d[0] - b.d[0]) + abs(a.d[1] - b.d[1]);
    }
    int dis(point a, int t)
    {
        int tmp = 0;
        for (int i = 0; i <= 1; ++ i)
            if (a.d[i] < tr[t].bd[i][0]) tmp += tr[t].bd[i][0] - a.d[i];
        for (int i = 0; i <= 1; ++ i)
            if (a.d[i] > tr[t].bd[i][1]) tmp += a.d[i] - tr[t].bd[i][1];
        return tmp;
    }
    int s, dp;
    void ask(int t, point nw)
    {
        s ++; 
        if (dis(tr[t].mid, nw) < nowans) nowans = dis(tr[t].mid, nw);
        int b[2];
        b[0] = dis(nw, tr[t].ch[0]);
        b[1] = dis(nw, tr[t].ch[1]);
        int k = b[1] < b[0];
        if (tr[t].ch[k]) if (b[k] < nowans) ask(tr[t].ch[k], nw);
        if (tr[t].ch[!k]) if (b[!k] < nowans) ask(tr[t].ch[!k], nw);
        //dp --;
    }
    int root;
    int main()
    {
        tr[0].bd[0][0] = tr[0].bd[1][0] = INF;
        scanf("%d%d", &n, &m);
        for (int i = N - 1; i >= 1; -- i) S.push(i);
        for (int i = 1; i <= n + m; ++ i)
        {
            int t = 1, x, y;
            if (i > n) scanf("%d", &t);
            scanf("%d%d", &x, &y);
            nowans = INF;
            if (t == 1) root = insert(0, root, (point){x, y});
            else
            {
                s = 0;
                ask(root, (point){x, y});
                printf("%d
    ", nowans);
            }
        }
    }
    View Code

    2717: [Violet 4]迷路的兔子

    第四道神题= =

    奥妙重重的构造题,只要知道这是对的就好了是不是哇QAQ

    时间复杂度(O(n^2))

    #include <bits/stdc++.h>
    #define N 1000
    using namespace std;
    int n, x;
    int remain[N][N];
    int main()
    {
        cin >> n;
        cout << n * (n - 1) / 2 << "
    ";
        for (int i = 1; i <= (n >> 1); ++ i)
            for (int j = 1; j <= n; ++ j)
                cout << j << " " << (j + i - 1) % n + 1 << " " << (j + i + i - 1) % n + 1 << "
    ";
    }
    View Code

    2718: [Violet 4]毕业旅行

    建二分图,把每个点(i)拆成两个点(A_i),(B_i)

    用传递闭包把原图中每个点能到达的点都跑出来,若(i)能到达(j),那么就在新图中将(A_i)与(B_j)连一条边。

    那么原图的独立集就相当于新图中的独立集。直接上匈牙利。

    时间复杂度(O(n^3))

    #include <bits/stdc++.h>
    using namespace std;
    int n, m;
    int sx[210][210];
    int vx[210], vy[210], pr[210];
    int ans;
    int dfs(int t)
    {
        vx[t] = 1;
        for (int i = 1; i <= n; ++ i)
            if (sx[t][i] && !vy[i] && !vx[pr[i]])
            {
                if (!pr[i] || dfs(pr[i]))
                {
                    pr[i] = t;
                    return 1;
                }
            }
        return 0;
    }
    int main()
    {
        scanf("%d%d", &n, &m);
        for (int i = 1; i <= m; ++ i)
        {
            int a, b;
            scanf("%d%d", &a, &b);
            sx[a][b] = 1;
        }
        for (int k = 1; k <= n; ++ k)
            for (int i = 1; i <= n; ++ i)
                for (int j = 1; j <= n; ++ j)
                    if (sx[i][k] && sx[k][j])
                        sx[i][j] |= 1;
        for (int i = 1; i <= n; ++ i)
        {
            for (int j = 1; j <= n; ++ j) vx[j] = vy[j] = 0;
            if (dfs(i)) ans ++;
        }
        printf("%d", n - ans);
    }
    View Code

    2719: [Violet 4]银河之星

    由于第二种移动的存在,所有在模三意义下同余的位置是等价的,因此可以缩在一起。

    直接上记搜。

    注意两个坑点:

      1.由于棋盘大小的限制,某些情况下第二种移动是没法做的,因此要现判断这些移动的可行性。

      2.由于棋盘大小的限制,每种位置能放的棋子的数量是有上限的,搜索时要判断一下

    时间复杂度O(跑的出)

    #include <bits/stdc++.h>
    using namespace std;
    int k, n, m, fin_x, fin_y;
    int fin;
    struct status
    {
        int ss[9];
        status () {for (int i = 0; i < 9; ++ i) ss[i] = 0;}
    };
    int operator <(status a, status b)
    {
        for (int i = 0; i < 9; ++ i)
            if (a.ss[i] != b.ss[i])
            return a.ss[i] < b.ss[i];
        return 0;
    }
    map <status, int> M;
    int xd[8] = {-1, -1, -1, 0, 1, 1, 1, 0};
    int yd[8] = {-1, 0, 1, 1, 1, 0, -1, -1};
    int ai[1000], bi[1000], ci[1000], tot;
    int cg[9][9], mx[9];
    int get_pos(int x, int y)
    {
        x = x % 3;
        y = y % 3;
        return x * 3 + y;
    }
    int dfs(status nw)
    {
        if (M.count(nw)) return M[nw];
        int is_ans = 1;
        for (int i = 0; i < 9; ++ i)
            if (((bool)nw.ss[i]) ^ (i == fin))
                is_ans = 0;
        if (is_ans) return 1;
        for (int i = 0; i < tot; ++ i)
            if (nw.ss[ai[i]] && nw.ss[bi[i]])
            {
                status nx = nw;
                nx.ss[ai[i]] --;
                nx.ss[bi[i]] --;
                nx.ss[ci[i]] ++;
                if (nx.ss[ci[i]] > mx[ci[i]]) continue;
                if (dfs(nx)) return M[nw] = 1;
            }
        return M[nw] = 0;
    }
    void init()
    {
        for (int i = 0; i < 9; ++ i)
            for (int j = 0; j < 9; ++ j)
                cg[i][j] = -1;
        for (int i = 0; i < 9; ++ i) mx[i] = 0;
        for (int i = 1; i <= n; ++ i)
            for (int j = 1; j <= m; ++ j)
            {
                mx[get_pos(i, j)] ++;
                for (int d = 0; d < 8; ++ d)
                    if (i + xd[d] * 2 >= 1 && i + xd[d] * 2 <= n && j + yd[d] * 2 >= 1 && j + yd[d] * 2 <= m)
                        cg[get_pos(i, j)][get_pos(i + xd[d], j + yd[d])] = get_pos(i + xd[d] * 2, j + yd[d] * 2);
            }
        tot = 0;
        for (int i = 0; i < 9; ++ i)
            for (int j = 0; j < 9; ++ j)
                if (cg[i][j] >= 0)
                {
                    ai[tot] = i;
                    bi[tot] = j;
                    ci[tot] = cg[i][j];
                    tot ++;
                }
    }
    int main()
    {
        while (scanf("%d%d%d%d%d", &k, &n, &m, &fin_x, &fin_y) == 5)
        {
            fin = get_pos(fin_x, fin_y);
            M.clear();
            status start;
            for (int i = 1; i <= k; ++ i)
            {
                int x, y; 
                scanf("%d%d", &x, &y);
                start.ss[get_pos(x, y)] ++;
            }
            init();
            if (dfs(start)) puts("Yes");
            else puts("No");
        }
    }
    
    View Code

    2720: [Violet 5]列队春游

    数学题,推推式子可以得到结论

    时间复杂度(O(nlogn))

    #include <bits/stdc++.h>
    using namespace std;
    int n, s;
    int ai[400];
    double ans;
     
    int main()
    {
        scanf("%d", &n);
        for (int i = 1; i <= n; ++ i) scanf("%d", &ai[i]);
        sort(ai + 1, ai + n + 1);
        for (int i = 1, j = 0; i <= n; ++ i)
            if (ai[i] != ai[i + 1])
            {
                ans += 1.0 * (i - j) * (n + 1) / (n + 1 - j);
                j = i;
            }
        printf("%.2lf", ans);
    }
    View Code

    2721: [Violet 5]樱花

    又是一道数学题,答案是((n!)^2)的约数个数,筛一下素数即可

    时间复杂度(O(n)) (还是(O(nloglogn))?)

    #include<cstdio>
    #include<cmath>
    #include<ctime>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    #define ll long long
    #define mod 1000000007
    #define inf 1000000000
    using namespace std;
    int read()
    {
        int x=0;char ch=getchar();
        while(ch<'0'||ch>'9')ch=getchar();
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x;
    }
    int n,cnt;
    ll ans=1;
    int pri[1000005],mn[1000005],num[1000005];
    bool del[1000005];
    void getpri()
    {
        for(int i=2;i<=n;i++)
        {
            if(!del[i])pri[++cnt]=i,mn[i]=cnt;
            for(int j=1;pri[j]*i<=n&&j<=cnt;j++)
            {
                del[pri[j]*i]=1;mn[pri[j]*i]=j;
                if(i%pri[j]==0)break;
            }
        }
    }
    void cal(int x)
    {
        while(x!=1)
        {
            num[mn[x]]++;
            x/=pri[mn[x]];
        }
    }
    int main()
    {
        n=read();
        getpri();
        for(int i=1;i<=n;i++)
            cal(i);
        for(int i=1;i<=cnt;i++)
            ans=ans*(num[i]*2+1)%mod;
        printf("%lld
    ",ans);
        return 0;
    }
    
    View Code

    2722: [Violet 5]爱的花环

    还是神题= =

    由于(A_{i,j}=A_{j,i})

    因此(l_{i,j})和(l_{j,i})的限制,(r_{i,j})和(r_{j,i})的限制可以分别合并在一起。

    且(sum_{i=1}^{n}sum_{j=1}^{n}A_{i,j}=0)可以化为:(sum_{i=1}^{n}A_{i,i} + 2sum_{i=1}^{n}sum_{j=i+1}^{n}A_{i,j}=0)。

    考虑做以下变换:

      对于所有满足(i!=j)的数对((i,j)),将(l_{i,j})、(r_{i,j})翻倍。

      对于所有(k_{i,i}),将其翻倍。

    在这个变换之后,原问题就转化为了:求一个满足

      (sum_{i=1}^{n}sum_{j=i}^{n}A_{i,j}=0),

      (l_{i,j}leq A_{i,j}leq r_{i,j}),

      对于所有(i != j),有(A_{i,j}mod2=0)

    这些限制的数组(A),使得(sum_{i=1}^{n}sum_{j=i}^{n}k_{i,j}A_{i,j})最大。

    这个问题得到的答案是原问题的两倍。

    现考虑如何解决这个问题。

    首先先排除对于所有(i != j),有(A_{i,j}mod2=0)这个限制,由于(k_{i,j})为正,可以这样做:

      1.将所有(A_{i,j})赋值为(r_{i,j})

      2.如果当前(sum_{i=1}^{n}sum_{j=i}^{n}A_{i,j}=0),结束,返回答案

      3.否则在满足(A_{i,j}!=l_{i,j})的数对((i,j))中找一个(k_{i,j})最小的,将它的(A_{i,j})减小,减小到满足下面任意一条限制为止:

        a.(sum_{i=1}^{n}sum_{j=i}^{n}A_{i,j}=0)

        b.(A_{i,j}=l_{i,j})

      4.转至步骤2

    这个贪心的正确性是明显的。

    那么加上对于所有(i != j),有(A_{i,j}mod2=0) 这个限制。考虑会发生什么:

      可能会出现一个(A_{i,j}(i != j))变成奇数了。

    为了满足这个限制,需要改变它的奇偶性。这个值从哪里来?只能从某一个(A_{p,p})中来。

    让答案尽可能的优,我们需要找到一个(abs(k_{p,p} - k_{i,j}))最小的((p, p)),并在((p, p)),((i, j))之间移动一个1即可。

    然后就是这样了……

    时间复杂度(O(n^2logn^2))

    #include <bits/stdc++.h>
    #define N 300000
    #define INF 100000000
    #define LL long long
    using namespace std;
    LL n;
    LL ss[600][600], pp[600][600], tot;
    LL ki[N], li[N], ri[N];
    LL nw[N];
    LL ord[N], nwsum, ans;
    LL comp(LL a, LL b)
    {
        return ki[a] < ki[b];
    }
    int main()
    {
        //freopen("garland6.in", "r", stdin);
        scanf("%lld", &n);
        for (LL i = 1; i <= n; ++ i) ss[i][i] = ++ tot;
        for (LL i = 1; i <= n; ++ i)
            for (LL j = i + 1; j <= n; ++ j)
                ss[i][j] = ss[j][i] = ++ tot;
        for (LL i = 1; i <= n * (n - 1); ++ i)
            li[i] = -INF, ri[i] = INF, ki[i] = 0;
        for (LL i = 1; i <= n; ++ i)
            for (LL j = 1; j <= n; ++ j)
            {
                LL a;
                scanf("%lld", &a);
                ki[ss[i][j]] += a;
            }
        for (LL i = 1; i <= n; ++ i)
            for (LL j = 1; j <= n; ++ j)
            {
                LL a;
                scanf("%lld", &a);
                li[ss[i][j]] = max(li[ss[i][j]], a);
            }
        for (LL i = 1; i <= n; ++ i)
            for (LL j = 1; j <= n; ++ j)
            {
                LL a;
                scanf("%lld", &a);
                ri[ss[i][j]] = min(ri[ss[i][j]], a);
            }
        for (LL i = 1; i <= n; ++ i) ki[i] *= 2;
        for (LL i = n + 1; i <= tot; ++ i) li[i] *= 2, ri[i] *= 2;
        //for (LL i = 1; i <= tot; ++ i) cout << li[i] << " "; cout << "
    ";
        //for (LL i = 1; i <= tot; ++ i) cout << ri[i] << " "; cout << "
    ";
        //for (LL i = 1; i <= tot; ++ i) cout << ki[i] << " "; cout << "
    ";
        for (LL i = 1; i <= tot; ++ i) ord[i] = i;
        sort(ord + 1, ord + tot + 1, comp);
        for (LL i = 1; i <= tot; ++ i) nw[i] = ri[i], nwsum += ri[i];
        for (LL i = 1; i <= tot; ++ i)
            if (nwsum > ri[ord[i]] - li[ord[i]]) nwsum -= ri[ord[i]] - li[ord[i]], nw[ord[i]] = li[ord[i]];
            else if (ord[i] <= n || nwsum % 2 == 0)
            {
                nw[ord[i]] -= nwsum; break;
            }
            else
            {
                nw[ord[i]] -= nwsum;
                LL p = i, q = i;
                while (ord[q] > n && q <= tot) ++ q;
                while (ord[p] > n && p >= 1) -- p;
                if (p < 1 || (q <= tot && ki[ord[q]] - ki[ord[i]] < ki[ord[i]] - ki[ord[p]]))
                {
                    nw[ord[i]] ++;
                    nw[ord[q]] --;
                }
                else
                {
                    nw[ord[i]] --;
                    nw[ord[p]] ++;
                }
                break;
            }
        for (LL i = 1; i <= n; ++ i)
            for (LL j = 1; j <= n; ++ j)
                if (i == j)
                    pp[i][j] = nw[ss[i][j]];
                else
                {
                    pp[i][j] = nw[ss[i][j]] / 2;
                    if (nw[ss[i][j]] % 2 == 1) puts("mdzz");
                }
                /*
        for (LL i = 1; i <= n; ++ i)
        {
            for (LL j = 1; j <= n; ++ j) printf("%d ", pp[i][j]);
            puts("");
        }*/
        for (LL i = 1; i <= tot; ++ i) ans += nw[i] * ki[i];
        printf("%lld", ans / 2);
    }
    View Code

    2723: [Violet 6]星之波动

    好像很神的样子QAQ,不敢看

    2724: [Violet 6]蒲公英

    很显然的分块,l~r之间的众数只可能出现在:l~块a的众数,块a~块b的众数,块b~r的众数之间,预处理出任意两块之间的众数,乱搞即可。

    时间复杂度(O(nsqrt{n}))

    #include <bits/stdc++.h>
    #define N 50000
    #define P 1000
    using namespace std;
    int n, m, s;
    int ai[N], si[N];
    int mx[P][P], in[N], st[N];
    vector <int> L[N], S;
    int nowi[N], nowmax;
    int get(int t, int l, int r)
    {
        int p = (upper_bound(L[t].begin(), L[t].end(), r) - lower_bound(L[t].begin(), L[t].end(), l)) * (n + 1) - t;
        return p;
    }
    int main()
    {
        scanf("%d%d", &n, &m); s = sqrt(n / (log(n) / log(2))) + 1;
        for (int i = 1; i <= n; ++ i)
            scanf("%d", &ai[i]), si[i] = ai[i];
        sort(si + 1, si + n + 1);
        for (int i = 1; i <= n; ++ i)
            ai[i] = lower_bound(si + 1, si + n + 1, ai[i]) - si;
        for (int i = 1; i <= n; ++ i) L[ai[i]].push_back(i);
        for (int i = 1, p = 1; i <= n; i += s, ++ p)
            for (int j = 1; j <= s && i + j - 1 <= n; ++ j)
                in[i + j - 1] = p;
         
        for (int i = 1; i <= n; i += s)
        {
            for (int j = 1; j <= n; ++ j) nowi[j] = 0;
            for (int j = i; j <= n; ++ j)
            {
                nowi[ai[j]] ++;
                if (nowi[ai[j]] > nowi[nowmax] || nowi[ai[j]] == nowi[nowmax] && ai[j] < nowmax) 
                    nowmax = ai[j];
                if (in[j] != in[j + 1]) mx[in[i]][in[j]] = nowmax;
            }
        }
        for (int i = 1, last = 0; i <= m; ++ i)
        {
            int l, r, ans = 0;
            scanf("%d%d", &l, &r);
            //last = 0;
            l = (l + last - 1) % n + 1;
            r = (r + last - 1) % n + 1;
            if (l > r) swap(l, r);
            S.clear();
            if (in[l] == in[r]) for (int i = l; i <= r; ++ i) S.push_back(ai[i]);
            else
            {
                for (int i = l; in[i] == in[l]; ++ i) S.push_back(ai[i]);
                for (int i = r; in[i] == in[r]; -- i) S.push_back(ai[i]);
                S.push_back(mx[in[l] + 1][in[r] - 1]);
            }
            for (int i = 0; i < S.size(); ++ i)
                if (get(S[i], l, r) > get(ans, l, r))
                    ans = S[i];
            ans = si[ans];
            printf("%d
    ", ans);
            last = ans;
        }
    }
    
    View Code

    2725: [Violet 6]故乡的梦

    终于要写完了QAQ

    首先从(s)开始建最短路径生成树。

    定义关键路径为该树上(s)->(t)的路径。

    定义一个点的(dep)

      若一个点在关键路径上,则该点的(dep)为它是关键路径上的第几个点。

      若一个点不在关键路径上,则该点的(dep)为它沿着树边走,到达第一个在关键路径上的点的(dep)。

    很明显,如果切断的边((x, y))如果不在关键路径上的话,最短路是不会变的。

    因此考虑((x, y))在树上的情况,假定x是y的父亲。

    考虑这时的路径是怎样的:(s)->(x')->(y')->(t)

    其中(s)->(x')是在原图上(s)到(x')的最短路,且(x')尽可能的晚,(y')->(t)是原图上(y')到(t)的最短路,且(y')尽可能的早。

    这三段一定不能含有(x)->(y)

    首先考虑(s)->(x')这一段,要使得其中没有(x)->(y),只需要保证(dep_{x'}leq dep_{x})即可

    接着考虑(y')->(t)这一段,要使得其中没有(x)->(y),只需要保证(dep_{y}leq dep_{y'})即可。由于最短路不会绕一圈,这个的正确性是显然的。

    最后考虑(x')->(y')这一段

      假设(x')->(y')不止一条边,那么设其中有一个点(a),因此这一段就变成了(x')->(a)->(y')

      但是由于只切断了一条边,因此(a)到(s)或者(t)中一个点的路径一定是最短路,于之前的设定矛盾。

      因此(x')->(y')只有一条边。

    于是我们可以枚举每条不在最短路图上的边((a, b)),用它去更新切断边在(left [  dep_{a},dep_{b} ight ])内的答案。用线段树维护即可

    时间复杂度(O((n+m)logn))

    #include <bits/stdc++.h>
    #define N 300000
    #define M 900000
    #define INF 1000000000000000ll
    #define LL long long
    using namespace std;
    LL n, m, s, e;
    vector <LL> bi[N], ci[N];
    LL vis[N];
    LL dis[N], die[N], pre[N], lst[N], tot;
    LL inls[N];
    struct node {LL t, d;};
    struct comp {LL operator () (node a, node b) {return a.d > b.d;}};
    priority_queue <node, vector <node>, comp> H;
     
    queue <LL> Q;
     
    void dfs1(int t, int p)
    {
        inls[t] = p;
        for (LL i = 0; i < bi[t].size(); ++ i)
            if (pre[bi[t][i]] == t)
                if (inls[bi[t][i]]) dfs1(bi[t][i], inls[bi[t][i]]);
                else dfs1(bi[t][i], p);
    }
     
    LL mn[M], finmn[N];
    void put_min(LL t, LL lb, LL rb, LL l, LL r, LL d)
    {
        if (lb == l && rb == r) {mn[t] = min(mn[t], d); return;}
        LL ml = (lb + rb) / 2, mr = (lb + rb) / 2 + 1;
        if (l <= ml) put_min(t * 2    , lb, ml, l, min(r, ml), d);
        if (r >= mr) put_min(t * 2 + 1, mr, rb, max(l, mr), r, d);
    }
    void dfs_seg(LL t, LL lb, LL rb)
    {
        if (lb != rb)
        {
            mn[t * 2] = min(mn[t * 2], mn[t]);
            dfs_seg(t * 2, lb, (lb + rb) / 2);
            mn[t * 2 + 1] = min(mn[t * 2 + 1], mn[t]);
            dfs_seg(t * 2 + 1, (lb + rb) / 2 + 1, rb);
        }
        else finmn[lb] = mn[t];
    }
    LL q;
    int main()
    {
        scanf("%lld%lld", &n, &m);
        for (LL i = 1; i <= m; ++ i)
        {
            LL a, b, c;
            scanf("%lld%lld%lld", &a, &b, &c);
            bi[a].push_back(b); ci[a].push_back(c);
            bi[b].push_back(a); ci[b].push_back(c);
        }
        scanf("%lld%lld", &s, &e);
        for (LL i = 1; i <= n; ++ i) 
            dis[i] = INF;
        dis[s] = 0; H.push((node){s, 0});
        while (!H.empty())
        {
            LL hd;
            do hd = H.top().t, H.pop();
            while (vis[hd] && !H.empty());
            if (vis[hd]) break; else vis[hd] = 1;
            for (LL i = 0; i < bi[hd].size(); ++ i)
                if (dis[hd] + ci[hd][i] < dis[bi[hd][i]])
                    dis[bi[hd][i]] = dis[hd] + ci[hd][i],
                    pre[bi[hd][i]] = hd,
                    H.push((node){bi[hd][i], dis[bi[hd][i]]});
        }
         
        for (LL i = 1; i <= n; ++ i) vis[i] = 0;
        for (LL i = 1; i <= n; ++ i) 
            die[i] = INF;
        die[e] = 0; H.push((node){e, 0});
        while (!H.empty())
        {
            LL hd;
            do hd = H.top().t, H.pop();
            while (vis[hd] && !H.empty());
            if (vis[hd]) break; else vis[hd] = 1;
            for (LL i = 0; i < bi[hd].size(); ++ i)
                if (die[hd] + ci[hd][i] < die[bi[hd][i]])
                    die[bi[hd][i]] = die[hd] + ci[hd][i],
                    H.push((node){bi[hd][i], die[bi[hd][i]]});
        }
         
        for (LL p = e; p; p = pre[p])
            lst[++ tot] = p, inls[p] = tot;
         
        dfs1(s, inls[s]);
        for (LL i = 1; i <= tot * 4; ++ i) mn[i] = INF;
        for (LL i = 1; i <= n; ++ i)
            for (LL j = 0; j < bi[i].size(); ++ j)
                if (inls[i] > inls[bi[i][j]] && pre[bi[i][j]] != i)
                    put_min(1, 1, tot, inls[bi[i][j]], inls[i] - 1, dis[i] + ci[i][j] + die[bi[i][j]]);
        dfs_seg(1, 1, tot);
         
        scanf("%lld", &q);
        for (LL i = 1; i <= q; ++ i)
        {
            LL a, b;
            scanf("%lld%lld", &a, &b);
            if (inls[a] > inls[b]) swap(a, b);
            if (lst[inls[a]] == a && lst[inls[b]] == b && inls[b] - inls[a] == 1)
                if (finmn[inls[a]] != INF) printf("%lld
    ", finmn[inls[a]]);
                else puts("Infinity");
            else printf("%lld
    ", dis[e]);
        }
    }
    
    View Code

    呼~~~

  • 相关阅读:
    Failure [INSTALL_FAILED_ALREADY_EXISTS]
    在CentOS 7上构建RAID5、LVM和SAMBAserver(5)——架设SAMBAserver
    adb命令具体解释(二)——手机缺失sqlite3时操作数据库的多种解决方式
    【环境配置】Linux的经常使用命令
    windowsclient开发--使你的client执行时记住上次关闭的大小和位置
    【13】以对象管理资源
    C++ 初始化与赋值
    C++ 变量初始化规则
    C++ 构造和析构
    【20】宁以pass-by-reference-to-const替换pass-by-value
  • 原文地址:https://www.cnblogs.com/AwD-/p/5997829.html
Copyright © 2011-2022 走看看