zoukankan      html  css  js  c++  java
  • LUOGU P1879 [USACO06NOV]Corn Fields G

    快被做烂的方案数状压DP

    设状态为一个正整数 (S) ,其在二进制的第 (i) 位若为 (1) 则表示在这一块有草地

    例如 (S = (0010)_2) 表示在第 (2) 列有草地,而其他列没有草地

    那么 设 (f(i,S)) 表示 在第 (i) 行 状态为 (S) 时的最优解

    状态转移方程即 (f(i,S) = sum f(i-1,p)) 其中 (p) 合法

    因为这道题限定了状态,即限定了那些地方肥沃

    为了解决这个问题 我引入了 (mp) 数组

    (mp(i)) 表示第 (i)(...)

    for(int i=1;i<=m;++i)
        for(int j=1;j<=n;++j) {
            scanf("%d",&x);
            mp[i] |= (x^1)<<(j-1);
        } // 读入
    

    rt,若允许的每行的最大状态为 ((1110)_2)(mp(i) = (0001)_2)

    那么状态转移方程的条件就可以列出来了

    即 每个状态 (S) 满足 !(j&(j<<1)||j&mp[i])

    每个状态 (p) 满足 !(p&(p<<1)||p&mp[i-1])

    然后就能快乐的打代码了

    // P1879 [USACO06NOV]玉米田Corn Fields
    // 设计状态
    // f[i][j] 表示 在第i行 状态为j时的最优解
    // f[i][j] = sigma(f[i-1][p])
    #include<bits/stdc++.h>
    using namespace std;
    const int p = (int)1e8;
    long long f[13][1<<12];
    int mp[13],m,n,x;
    int main() {
        scanf("%d%d",&m,&n);
        for(int i=1;i<=m;++i)
            for(int j=1;j<=n;++j) {
                scanf("%d",&x);
                mp[i] |= (x^1)<<(j-1);
            }
        for(int i=0;i<(1<<n);++i) if(!(i&mp[1]||i&(i<<1))) f[1][i] = 1;
        for(int i=2;i<=m;++i)
            for(int j=0;j<(1<<n);++j) {
                if(j&(j<<1)||j&mp[i]) continue ;
                for(int k=0;k<(1<<n);++k) {
                    if(j&k||k&mp[i-1]) continue ;
                    f[i][j] = (f[i][j] + f[i-1][k]) % p;
                }
            }
        long long ans = 0;
        for(int i=0;i<(1<<n);++i) ans = (ans + f[m][i]) % p;
        printf("%lld",ans);
        return 0;
    }
    
  • 相关阅读:
    TI CC2541的整体目标
    TI CC2541的GPIO引脚设置.
    E2PROM与Flash的引脚图
    TI BLE CC2541的通讯协议.
    TI BLE CC2541的I2C主模式
    Charles如何抓取电脑上的请求的https数据包
    Charles如何抓取手机上的请求的https数据包
    谷歌浏览器chrome调试H5页面 如果添加cookie?
    Unity 好坑的Save Scene
    Unity 官网教程 -- Multiplayer Networking
  • 原文地址:https://www.cnblogs.com/Ax-Dea/p/12497779.html
Copyright © 2011-2022 走看看