zoukankan      html  css  js  c++  java
  • [洛谷P4198] 楼房重建

    洛谷题目链接:楼房重建

    题目描述

    小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。

    为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。

    施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大—修建,也可以比原来小—拆除,甚至可以保持不变—建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

    输入输出格式

    输入格式:

    第一行两个正整数N,M

    接下来M行,每行两个正整数Xi,Yi

    输出格式:

    M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

    输入输出样例

    输入样例#1:

    3 4
    2 4
    3 6
    1 1000000000
    1 1

    输出样例#1:

    1
    1
    1
    2

    说明

    对于所有的数据1<=Xi<=N,1<=Yi<=10^9

    N,M<=100000

    题解: 这题可以用线段树来做.

    首先建树,修改的操作都是模板,因为是单点修改,所以不用(pushdown),这里就不多说了,关键是如何写(push\_up)函数.

    首先我们对每个线段树上的节点需要记录一个(sum)表示总共能够看到的楼房数量,还需要记录一个(mx)表示该区间内最大的斜率.

    首先我们考虑将一个区间分成两部分之后能看到的是哪些部分.我们需要记录一个在递归的时候左边的最大斜率,记为(lmx),那么会有这样几种情况:

    1. 左边的节点的(mx)小于(lmx),左边没有楼房可以被看到,递归右半边.
    2. 左边的节点的(mx)大于(lmx),那么右边原本能被看到的楼房在加入了左边之后也一定能被看到,递归左半边并加上右半边的答案.

    这样操作之后(pushdown)所需要的时间从(O(1))变成了(O(logn)).

    具体实现就是这样的:

    int up1(double lmx, int x){
        if(t[x].mx <= lmx) return 0;
        if(k[t[x].l] > lmx) return t[x].sum;
        if(t[x].l == t[x].r) return t[x].mx > lmx;
        if(t[ll(x)].mx <= lmx) return up1(lmx, rr(x));
        return up1(lmx, ll(x))+t[x].sum-t[ll(x)].sum;
    }
    

    放一下完整代码:

    #include<bits/stdc++.h>
    #define ll(x) (x << 1)
    #define rr(x) (x << 1 | 1)
    using namespace std;
    const int N = 1e5+5;
    
    int n, m;
    double k[N];
    
    struct SegmentTree{ int l, r, sum; double mx; }t[N*4];
    
    int up1(double lmx, int x){
        if(t[x].mx <= lmx) return 0;
        if(k[t[x].l] > lmx) return t[x].sum;
        if(t[x].l == t[x].r) return t[x].mx > lmx;
        if(t[ll(x)].mx <= lmx) return up1(lmx, rr(x));
        return up1(lmx, ll(x))+t[x].sum-t[ll(x)].sum;
    }
    
    void up(int x){
        t[x].mx = max(t[ll(x)].mx, t[rr(x)].mx);
        t[x].sum = t[ll(x)].sum+up1(t[ll(x)].mx, rr(x));
    }
    
    void build(int l, int r, int x = 1){
        t[x].l = l, t[x].r = r;
        if(l == r) return; int mid = (l+r>>1);
        build(l, mid, ll(x)), build(mid+1, r, rr(x));
    }
    
    void update(int pos, int a, int b, int x = 1){
        if(t[x].l == t[x].r){
            t[x].mx = (double)b*1.0/a, t[x].sum = 1; return;
        }
        int mid = (t[x].l+t[x].r>>1);
        if(pos <= mid) update(pos, a, b, ll(x));
        else update(pos, a, b, rr(x)); up(x);
    }
    
    int main(){
        int x, y; cin >> n >> m, build(1, n);
        for(int i = 1; i <= m; i++){
            cin >> x >> y; k[x] = (double)y*1.0/x;
            update(x, x, y);
            cout << t[1].sum << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    HTML5 闹钟例子程序
    程序员书籍,你值得收藏
    mybatis入门案例测试常见问题以及解决方法
    jquery对Select标签的操作
    Linux下mysql整库备份
    Windows 命令提示符下查看 apache 错误的方法
    将 DataTable 转化为 Excel Xml 格式供下载
    Infragistics netadvantage UltraGrid (UltraWinGrid) 编程手记
    报表设计技巧交叉报表模板
    Gentle.NET Users' Guide
  • 原文地址:https://www.cnblogs.com/BCOI/p/10447450.html
Copyright © 2011-2022 走看看