zoukankan      html  css  js  c++  java
  • 【HIVE】数据分析HQL的编写方法/思路

    SQL编写一般思路:

    1)复杂的查询,先划分为小任务,以降低难度。分别实现各个小任务后,再进行汇总;
    2)涉及多表时,先进行联表查询;
    3)简单分组,一般只需要group by即可;
    4)组内TopN问题,使用row_number,rank,dense_rank;
    5)熟练掌握常用函数;
    

    1. 常用函数

    1)字符串
    split,分割字符串为数组,split(“a|b|c”, “|”) => 返回数组 [a, b, c]
    参数1:待分割到字符串;
    参数2:分割字符,因为"|“在Java中是特殊字符,所以需要进行转义,转义使用两个”";
    substr,取子字符串,substr(moviename, -5, 4)
    参数1:原字符串;
    参数2:截取的开始位置,如果是负数,则从右往左计数,如-1表示最后一个字符,-2表示倒数第二个字符;
    参数3:截取长度;

    示例:
    		0: jdbc:hive2://master:10000> select *, substr(moviename, -5, 4) as year from t_movie limit 5;
    		+------------------+-------------------------------------+-------------------------------+-------+
    		| t_movie.movieid  |          t_movie.moviename          |       t_movie.movietype       | year  |
    		+------------------+-------------------------------------+-------------------------------+-------+
    		| 1                | Toy Story (1995)                    | Animation|Children's|Comedy   | 1995  |
    		| 2                | Jumanji (1995)                 	 | Adventure|Children's|Fantasy  | 1995  |
    		| 3                | Grumpier Old Men (1995)          	 | Comedy|Romance         		 | 1995  |
    		| 4                | Waiting to Exhale (1995)       	 | Comedy|Drama                  | 1995  |
    		| 5                | Father of the Bride Part II (1995)  | Comedy                        | 1995  |
    		+------------------+-------------------------------------+-------------------------------+-------+
    

    2)时间函数
    year,获取时间的年份;
    month,获取时间的月份;
    from_unixtime,将时间戳转换为时间;
    unix_timestamp():获取当前时间戳;
    unix_timestamp(string date):时间转换为时间戳;

    获取当前日期 & 时间:
    			当前日期:
    					0: jdbc:hive2://master:10000> select current_date();
    					+-------------+
    					|     _c0     |
    					+-------------+
    					| 2019-09-21  |
    					+-------------+
    			当前时间:
    					0: jdbc:hive2://master:10000> select current_timestamp();
    					+--------------------------+
    					|           _c0            |
    					+--------------------------+
    					| 2019-09-21 18:05:27.768  |
    					+--------------------------+
    			当前时间戳:
    					0: jdbc:hive2://master:10000> select unix_timestamp();
    					+-------------+
    					|     _c0     |
    					+-------------+
    					| 1569060416  |
    					+-------------+
    		
    		从时间中获取年份:
    					0: jdbc:hive2://master:10000> select year("2019-09-21 18:05:27.768 ") as year;
    					+-------+
    					| year  |
    					+-------+
    					| 2019  |
    					+-------+
    		
    		从时间戳中获取月份:
    					0: jdbc:hive2://master:10000> select month(from_unixtime(1569060416)) as month;
    					+--------+
    					| month  |
    					+--------+
    					| 9      |
    					+--------+
    

    3)聚合函数
    sum、avg等;

    4)explode
    将数组等拆分为多行

    0: jdbc:hive2://master:10000> select m.*, t.type from t_movie m lateral view explode(split(movietype, "\|")) t as type limit 10;
    		+------------+---------------------------+-------------------------------+-------------+
    		| m.movieid  |        m.moviename        |          m.movietype          |   t.type    |
    		+------------+---------------------------+-------------------------------+-------------+
    		| 1          | Toy Story (1995)          | Animation|Children's|Comedy   | Animation   |
    		| 1          | Toy Story (1995)          | Animation|Children's|Comedy   | Children's  |
    		| 1          | Toy Story (1995)          | Animation|Children's|Comedy   | Comedy      |
    		| 2          | Jumanji (1995)            | Adventure|Children's|Fantasy  | Adventure   |
    		| 2          | Jumanji (1995)            | Adventure|Children's|Fantasy  | Children's  |
    		| 2          | Jumanji (1995)            | Adventure|Children's|Fantasy  | Fantasy     |
    		| 3          | Grumpier Old Men (1995)   | Comedy|Romance                | Comedy      |
    		| 3          | Grumpier Old Men (1995)   | Comedy|Romance                | Romance     |
    		| 4          | Waiting to Exhale (1995)  | Comedy|Drama                  | Comedy      |
    		| 4          | Waiting to Exhale (1995)  | Comedy|Drama                  | Drama       |
    		+------------+---------------------------+-------------------------------+-------------+
    

    5)collect_set,可以理解为该函数实现了explode相反到功能;
    collect_list:可以包含重复数据;collect_set:去重;
    将多行某字段到数据,合并为一个数组,需要结合group by进行分组,以确定合并到行到范围。

    0: jdbc:hive2://master:10000> select moviename, collect_set(type) as types from (select m.*, t.type from t_movie m lateral view explode(split(movietype, "\|")) t as type limit 10) t group by moviename;
    		+---------------------------+---------------------------------------+
    		|         moviename         |                 types                 |
    		+---------------------------+---------------------------------------+
    		| Jumanji (1995)            | ["Children's","Adventure","Fantasy"]  |
    		| Toy Story (1995)          | ["Comedy","Children's","Animation"]   |
    		| Grumpier Old Men (1995)   | ["Comedy","Romance"]                  |
    		| Waiting to Exhale (1995)  | ["Drama","Comedy"]                    |
    		+---------------------------+---------------------------------------+
    

    2. 常见场景及方法

    2. 常见场景及方法
    	1)简单条件过滤;
    		使用where,显示movieid为1到电影名:
    		0: jdbc:hive2://master:10000> select moviename from t_movie where movieid = 1;
    		+-------------------+
    		|     moviename     |
    		+-------------------+
    		| Toy Story (1995)  |
    		+-------------------+
    		
    	2)联表条件过滤;
    		使用join on,获取评分为5的电影名:
    		select moviename, rate from t_rating r join t_movie m on r.movieid=m.movieid where rate=5 limit 5;
    		+-----------------------------------------+-------+
    		|                moviename                | rate  |
    		+-----------------------------------------+-------+
    		| One Flew Over the Cuckoo's Nest (1975)  | 5.0   |
    		| Bug's Life, A (1998)                    | 5.0   |
    		| Ben-Hur (1959)                      	  | 5.0   |
    		| Christmas Story, A (1983)               | 5.0   |
    		| Beauty and the Beast (1991)       	  | 5.0   |
    		+-----------------------------------------+-------+
    	
    	3)分组统计;
    		使用group by和聚合函数
    		获取电影的平均评分:
    		select movieid, avg(rate) avg_rate from t_rating group by movieid order by movieid limit 5;
    		+----------+---------------------+
    		| movieid  |      avg_rate     	 |
    		+----------+---------------------+
    		| 1        | 4.146846413095811   |
    		| 2        | 3.20114122681883    |
    		| 3        | 3.01673640167364    |
    		| 4        | 2.7294117647058824  |
    		| 5        | 3.0067567567567566  |
    		+----------+---------------------+
    		
    	4)组内TopN;
    		使用row_number,rank,dense_rank;
    		获取各部门工资最高的三名员工:
    		select * from (select deptid, name, (salary+nvl(bonus, 0)) salary, dense_rank() over(partition by deptid order by salary desc) as rank from emp) t where rank<=3;
    		+-----------+---------+-----------+---------+
    		| t.deptid  | t.name  | t.salary  | t.rank  |
    		+-----------+---------+-----------+---------+
    		| 10        | KING    | 5000.0    | 1       |
    		| 10        | CLARK   | 2450.0    | 2       |
    		| 10        | MILLER  | 1300.0    | 3       |
    		| 20        | FORD    | 3000.0    | 1       |
    		| 20        | SCOTT   | 3000.0    | 1       |
    		| 20        | JONES   | 2975.0    | 2       |
    		| 20        | ADAMS   | 1100.0    | 3       |
    		| 30        | BLAKE   | 2850.0    | 1       |
    		| 30        | ALLEN   | 1900.0    | 2       |
    		| 30        | TURNER  | 1500.0    | 3       |
    		+-----------+---------+-----------+---------+
    	
    	5)累加;
    		使用sum() over(partition by order by)
    		获取每个人按月累计消费:
    		select name, dt, cost, sum(cost) over(partition by name, month(dt) order by cost) as sum from t_order order by name;
    		+-------+-------------+-------+------+
    		| name  |     dt      | cost  | sum  |
    		+-------+-------------+-------+------+
    		| jack  | 2015-01-01  | 10    | 10   |
    		| jack  | 2015-01-05  | 46    | 56   |
    		| jack  | 2015-01-08  | 55    | 111  |
    		| jack  | 2015-02-03  | 23    | 23   |
    		| jack  | 2015-04-06  | 42    | 42   |
    		| mart  | 2015-04-08  | 62    | 62   |
    		| mart  | 2015-04-09  | 68    | 130  |
    		| mart  | 2015-04-11  | 75    | 205  |
    		| mart  | 2015-04-13  | 94    | 299  |
    		
    		注意,如果over语句中没有order by,则求取的是该月份的消费总金额,而不会出现累加。
    		select name, dt, cost, sum(cost) over(partition by name, month(dt)) as sum from t_order order by name;
    		+-------+-------------+-------+------+
    		| name  |     dt      | cost  | sum  |
    		+-------+-------------+-------+------+
    		| jack  | 2015-01-01  | 10    | 111  |
    		| jack  | 2015-01-05  | 46    | 111  |
    		| jack  | 2015-01-08  | 55    | 111  |
    		| jack  | 2015-02-03  | 23    | 23   |
    		| jack  | 2015-04-06  | 42    | 42   |
    		| mart  | 2015-04-08  | 62    | 299  |
    		| mart  | 2015-04-09  | 68    | 299  |
    		| mart  | 2015-04-11  | 75    | 299  |
    		| mart  | 2015-04-13  | 94    | 299  |
    
    
  • 相关阅读:
    git config (21)
    狗狗染头,一举天下成名
    K2使用总结K2简介
    K2使用总结流程设计
    如何组建开发团队谈面试
    如何组建开发团队谈谈团队组成
    如何组建开发团队谈招聘中的牛人
    作业题有感
    js对象学习笔记Function类型和对象
    非常认同的《SEO优化大全》
  • 原文地址:https://www.cnblogs.com/BIG-BOSS-ZC/p/11807299.html
Copyright © 2011-2022 走看看