我们根据欧几里得定理可以知道
(a,b)=(b,a mod b)也可以得到
(a+b,b)=(b,(a+b) mod b)=(b,a)=(a,b)
直观点说就是两个数a,b的gcd,和a+b,b的gcd是相等的
那么我们可以知道phi(m!)也就是与1-m!中与m!互质的数,
那么对于每个互质的数,我们加上m!,就可以得到一个新的
和m!互质的数,所以对于每个1-m!与m!互质的数
n!范围内一共可以得到n!/m!组解,那么一共也就是phi(m!)*(n!/m!)
可以将phi(m!)用公式展开化简,在此不再赘述
/************************************************************** Problem: 2186 User: BLADEVIL Language: Pascal Result: Accepted Time:9524 ms Memory:248272 kb ****************************************************************/ //By BLADEVIL var t, r :longint; i :longint; prime :array[0..1000001] of longint; flag :array[0..10000001] of boolean; fac, pi1, pi2 :array[0..10000001] of int64; x, y :int64; procedure make; var i, j :longint; begin fac[0]:=1; flag[1]:=true; for i:=1 to 10000000 do fac[i]:=fac[i-1]*int64(i) mod r; for i:=2 to 10000000 do begin if not flag[i] then begin inc(prime[0]); prime[prime[0]]:=i; end; for j:=1 to prime[0] do begin if i*prime[j]>10000000 then break; flag[i*prime[j]]:=true; if i mod prime[j]=0 then break; end; end; pi1[0]:=1; pi2[0]:=1; for i:=1 to 10000000 do begin pi1[i]:=pi1[i-1]; if not flag[i] then pi1[i]:=pi1[i]*int64(i-1) mod r; end; for i:=1 to 10000000 do begin pi2[i]:=pi2[i-1]; if not flag[i] then pi2[i]:=pi2[i]*int64(i) mod r; end; end; procedure ex_gcd(a,b:int64); var z :int64; begin if b=0 then begin x:=1; y:=0; exit; end; ex_gcd(b,a mod b); z:=x; x:=y; y:=z-(a div b)*y; end; function gcd(a:int64):int64; begin ex_gcd(a,r); gcd:=(x mod r+r) mod r; end; procedure main; var i :longint; ans :int64; n, m :longint; begin read(n,m); ans:=fac[n]; ans:=ans*pi1[m] mod r; ans:=ans*gcd(pi2[m]) mod r; writeln(ans); end; begin read(t,r); make; for i:=1 to t do main; end.