首先达成一个共识,n为偶数,无法做到
因为n为偶数,最后奇数条边,和每次撕偶数条边不符合
n为奇数时,做dfs
首先一个除了root每个点都是奇数度的树,可以通过先序序列把这个树撕掉(这个自己脑补)
如果上述成立,那么我可以直接dfs,从离叶子最近的地方找这种树,并且把他撕掉
大概就像从叶子不断向上撕差不多
就可以了
核心就是找 除了root每个点都是奇数度的最小子树
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 2e5 + 5;
#define MS(x, y) memset(x, y, sizeof(x))
#define MP(x, y) make_pair(x, y)
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 9;
vector<int> E[N];
int sz[N];
int degree[N];
int Stack[N];
int tot;
int Id[N];
void dfs(int x, int pre) {
sz[x] = 1;
Stack[++tot] = x;
Id[x] = tot;
if (pre != x)
degree[x] ^= 1;
int evenp = 1;
for (int i = 0; i < E[x].size(); ++i) {
int to = E[x][i];
if (to == pre)
continue;
dfs(to, x);
sz[x] += sz[to];
if (sz[to]) {
degree[x] ^= 1;
evenp &= (sz[to] & 1);
}
}
if (evenp && (degree[x] == 0)) {
sz[x] = 0;
for (int i = Id[x]; i <= tot; ++i) {
printf("%d
", Stack[i]);
}
tot = Id[x] - 1;
}
}
int main() {
int n;
while (~scanf("%d", &n)) {
tot = 0;
memset(degree, 0, sizeof(degree));
for (int i = 1; i <= n; ++i)
E[i].clear();
int rt;
for (int i = 1; i <= n; ++i) {
int a;
scanf("%d", &a);
if (a) {
E[i].push_back(a);
E[a].push_back(i);
}
}
if (n % 2 == 0) {
printf("NO
");
} else {
printf("YES
");
dfs(1, 1);
}
}
return 0;
}
/*
5
0 1 2 1 2
5
5
0 1 2 3 3
*/