zoukankan      html  css  js  c++  java
  • 【HDU3853】LOOPS [期望DP]

    LOOPS

    Time Limit: 5 Sec  Memory Limit: 64 MB
    [Submit][Status][Discuss]

    Description

      Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).
      Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.


      The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
      At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.

    Input

      The first line contains two integers R and C.

      The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.

      It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).

      You may ignore the last three numbers of the input data. They are printed just for looking neat.

      Terminal at EOF

    Output

      A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

    Sample Input

      2 2
      0.00 0.50 0.50    0.50 0.00 0.50
      0.50 0.50 0.00    1.00 0.00 0.00

      2 2
      0.00 0.50 0.50    0.50 0.00 0.50
      0.50 0.50 0.00    1.00 0.00 0.00

    Sample Output

      6.00

      6.00

    HINT

      2 <= R, C <= 1000, 答案<=1000000.

    Main idea

      每个位置有三种情况:不动、向右走一步、向下走一步。给出了每种情况的概率,执行一次情况会产生2的贡献,询问从 (1,1) 到 (n,m)的贡献的期望。多组数据。

    Solution

      我们运用期望DP求解,我们先令 f[i][j] 表示从(n,m) 到 (i,j) 的期望,然后可以轻易地推出一个式子,左右移项一下即可:

      得到了这个式子之后我们就可以从 (n,m) 递推到 (1,1) 了。

    Code

     1 #include<iostream>  
     2 #include<string>  
     3 #include<algorithm>  
     4 #include<cstdio>  
     5 #include<cstring>  
     6 #include<cstdlib>  
     7 #include<cmath>
     8 #include<bitset>
     9 using namespace std; 
    10 const int ONE = 1001;
    11 
    12 int n,m;
    13 double p[ONE][ONE][3],f[ONE][ONE]; 
    14 
    15 int get() 
    16 {
    17         int res=1,Q=1;  char c;
    18         while( (c=getchar())<48 || c>57)
    19         if(c=='-')Q=-1;
    20         if(Q) res=c-48; 
    21         while((c=getchar())>=48 && c<=57) 
    22         res=res*10+c-48; 
    23         return res*Q; 
    24 }
    25 
    26 int main()
    27 {
    28         while(scanf("%d%d", &n, &m) != EOF)
    29         {    
    30             for(int i=1;i<=n;i++)
    31             for(int j=1;j<=m;j++)
    32                 scanf("%lf %lf %lf", &p[i][j][0], &p[i][j][1], &p[i][j][2]);
    33             
    34             f[n][m] = 0;
    35             for(int i=n;i>=1;i--)
    36             for(int j=m;j>=1;j--)
    37                 if(p[i][j][0]!=1 && (i!=n || j!=m))
    38                     f[i][j] = (p[i][j][1]*f[i][j+1] + p[i][j][2]*f[i+1][j] + 2) / (1-p[i][j][0]);
    39             
    40             printf("%.3lf
    ",f[1][1]);
    41         }
    42 }
    View Code
  • 相关阅读:
    Qt之JSON生成与解析
    Qt的QLineEdit显示密码
    Ubuntu14.04 64位运行32位程序
    Xcode 7在支持ipad的设备中需要支持分屏!
    「模板」平衡树
    [NOI2016]区间 题解(决策单调性+线段树优化)
    [NOIP模拟测试12]题解
    [笔记乱写]0/1分数规划
    [NOIP模拟测试11] 题解
    [SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)
  • 原文地址:https://www.cnblogs.com/BearChild/p/6645167.html
Copyright © 2011-2022 走看看