zoukankan      html  css  js  c++  java
  • 【HDU4405】Aeroplane chess [期望DP]

    Aeroplane chess

    Time Limit: 1 Sec  Memory Limit: 32 MB
    [Submit][Stataus][Discuss]

    Description

      Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

      There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

      Please help Hzz calculate the expected dice throwing times to finish the game.

    Input

      There are multiple test cases.
      Each test case contains several lines.
      The first line contains two integers N.
      Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).  
      The input end with N=0, M=0.

    Output

        For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.

    Sample Input

      2 0
      8 3
      2 4
      4 5
      7 8
      0 0

    Sample Output

      1.1667
      2.3441

    HINT

      1≤N≤100000, 0≤M≤1000

    Main idea

      从0走到n-1,每次以均等概率走1~6步,某些点可以直接跨越到指定点,求走出n所需走的次数的期望。

    Solution

      我们直接使用期望DP求解。令 f[i] 表示到位置 i 的期望,然后直接从后往前递推即可。

    Code

     1 #include<iostream>  
     2 #include<string>  
     3 #include<algorithm>  
     4 #include<cstdio>  
     5 #include<cstring>  
     6 #include<cstdlib>  
     7 #include<cmath>
     8 #include<bitset>
     9 using namespace std; 
    10 const int ONE = 100001;
    11 
    12 int n,m;
    13 int x,y,To[ONE];
    14 double f[ONE];
    15 
    16 int get() 
    17 {
    18         int res=1,Q=1;  char c;
    19         while( (c=getchar())<48 || c>57)
    20         if(c=='-')Q=-1;
    21         if(Q) res=c-48; 
    22         while((c=getchar())>=48 && c<=57) 
    23         res=res*10+c-48; 
    24         return res*Q; 
    25 }
    26 
    27 void Solve()
    28 {
    29         n=get();    m=get();
    30         if(!n && !m) exit(0);
    31         memset(To,0,sizeof(To)); memset(f,0,sizeof(f));
    32         for(int i=1;i<=m;i++)
    33         {
    34             x=get();    y=get();
    35             To[x] = y; 
    36         }
    37         
    38         for(int i=n-1;i>=0;i--)
    39         {
    40             if(To[i]) {f[i] = f[To[i]]; continue;}
    41             for(int j=1;j<=6;j++)
    42                 f[i] += (double)1/6 * f[min(i+j,n)];
    43             f[i]++;
    44         }
    45         
    46         printf("%.4lf
    ",f[0]);
    47 }
    48 
    49 int main()
    50 {
    51         for(;;)
    52             Solve();
    53 }
    View Code

     

  • 相关阅读:
    看淘宝营销api 文档有感
    创业公司如何做好数据驱动的开发工作
    docker 常见错误总结
    从npm 角度理解 mvn 的 pom.xml
    best practices for designing web api
    我对自动化测试的一些认识
    Docker学习笔记
    Docker命令学习
    JVM学习笔记三:垃圾收集器与内存分配策略
    JVM学习笔记二:JVM参数
  • 原文地址:https://www.cnblogs.com/BearChild/p/6646805.html
Copyright © 2011-2022 走看看