B. Divisor Subtraction
You are given an integer number n. The following algorithm is applied to it:
- if n=0, then end algorithm;
- find the smallest prime divisor d of n;
- subtract d from n and go to step 1.
Determine the number of subtrations the algorithm will make.
Input
The only line contains a single integer n (2≤n≤10,2≤n≤10).
Output
Print a single integer — the number of subtractions the algorithm will make.
Examples
input
5
output
1
input
4
output
2
Note
In the first example 5 is the smallest prime divisor, thus it gets subtracted right away to make a 0.
In the second example 2 is the smallest prime divisor at both steps.
题意
将一个数n减去其最小质因数,若差为0,则终止进程,否则,重复减去最小质因数的操作。
统计一下相减的次数。
思路(复盘)
- 按照题意发现,若数为偶数,其最小质因数为2,减完后其仍然为偶数,其最小质因数仍然为2,此时将会一直减2,直到为0。
- 质数按奇偶性分,可将2单独归为一类,另将其他非2的归为一类。而结合思路1可知,我们需要着重考虑的是当n为奇数的情况,而当n为奇数时,其最小质因数必不为偶数,为奇数,且当奇数减去奇数质因数时,结果为偶数,从而进入到思路1的解法中。
#include<bits/stdc++.h>
using namespace std;
long long get_prime(long long n)
{
for(long long i=2;i*i<=n;i++)
{
if(n%i==0)
return i;
} return n;
}
int main()
{
long long n,cnt=0;
cin>>n;
if(n%2!=0)
{
n=n-get_prime(n);
cnt++;
}
cout<<cnt+n/2;
return 0;
}