zoukankan      html  css  js  c++  java
  • LRu Cache算法原理

    LRU Cache算法原理:

    1. 新数据插入到链表头部;

    2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;

    3. 当链表满的时候,将链表尾部的数据丢弃。

    分析

    【命中率】

    当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。

    【复杂度】

    实现简单。

    【代价】

    命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

    LRU-K

    2.1. 原理

    LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

    2.2. 实现

    相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

    1. 数据第一次被访问,加入到访问历史列表;

    2. 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;

    3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;

    4. 缓存数据队列中被再次访问后,重新排序;

    5. 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。

    LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

    Two queues(2Q)

    3.1. 原理

    Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。

    3.2. 实现

    当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

    1. 新访问的数据插入到FIFO队列;

    2. 如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;

    3. 如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;

    4. 如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;

    5. LRU队列淘汰末尾的数据。

    注:上图中FIFO队列比LRU队列短,但并不代表这是算法要求,实际应用中两者比例没有硬性规定。

    3.3. 分析

    【命中率】

    2Q算法的命中率要高于LRU。

    【复杂度】

    需要两个队列,但两个队列本身都比较简单。

    【代价】

    FIFO和LRU的代价之和。

    2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。

     Multi Queue(MQ)

    4.1. 原理

    MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。

    4.2. 实现

    MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如

    详细的算法结构图如下,Q0,Q1....Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:

    如上图,算法详细描述如下:

    1. 新插入的数据放入Q0;

    2. 每个队列按照LRU管理数据;

    3. 当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;

    4. 为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;

    5. 需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;

    6. 如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;

    7. Q-history按照LRU淘汰数据的索引。

    4.3. 分析

    【命中率】

    MQ降低了“缓存污染”带来的问题,命中率比LRU要高。

    【复杂度】

    MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。

    【代价】

    MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。

    注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。

    由于不同的访问模型导致命中率变化较大,此处对比仅基于理论定性分析,不做定量分析。

    对比点

    对比

    命中率

    LRU-2 > MQ(2) > 2Q > LRU

    复杂度

    LRU-2 > MQ(2) > 2Q > LRU

    代价

    LRU-2  > MQ(2) > 2Q > LRU

    实际应用中需要根据业务的需求和对数据的访问情况进行选择,并不是命中率越高越好。例如:虽然LRU看起来命中率会低一些,且存在”缓存污染“的问题,但由于其简单和代价小,实际应用中反而应用更多。

    java中最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可

    如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
     

    用于自己个人学习记录,

    参考网址:http://flychao88.iteye.com/blog/1977653

  • 相关阅读:
    lambda表达式查询经验:IN 和groupby的使用
    Sql server 查询指定时间区间工作日数、休息日数等日期操作
    ASP.NET MVC用存储过程批量添加修改数据
    .NET十五周年生日快乐 (3月7日发布Visual Studio 2017正式版?)
    浅谈 MVC中的ViewData、ViewBag和TempData
    ASP.NET给前端动态添加修改 CSS样式JS 标题 关键字
    元宵节大家来猜灯谜,祝元宵节快乐!
    Visual Studio 2017 RC 初探安装
    MySql存储过程的使用
    准备熟悉Kaggle -菜鸟进阶
  • 原文地址:https://www.cnblogs.com/BeeSnow/p/8030033.html
Copyright © 2011-2022 走看看