zoukankan      html  css  js  c++  java
  • BZOJ1734: [Usaco2005 feb]Aggressive cows 愤怒的牛 二分查找

    Description

    Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The stalls are located along a straight line at positions x1,...,xN (0 <= xi <= 1,000,000,000). His C (2 <= C <= N) cows don't like this barn layout and become aggressive towards each other once put into a stall. To prevent the cows from hurting each other, FJ want to assign the cows to the stalls, such that the minimum distance between any two of them is as large as possible. What is the largest minimum distance?

    农夫 John 建造了一座很长的畜栏,它包括NN (2 <= N <= 100,000)个隔间,这些小隔间依次编号为x1,...,xN (0 <= xi <= 1,000,000,000). 但是,John的C (2 <= C <= N)头牛们并不喜欢这种布局,而且几头牛放在一个隔间里,他们就要发生争斗。为了不让牛互相伤害。John决定自己给牛分配隔间,使任意两头牛之间的最小 距离尽可能的大,那么,这个最大的最小距离是什么呢

    Input

    * Line 1: Two space-separated integers: N and C * Lines 2..N+1: Line i+1 contains an integer stall location, xi

    第一行:空格分隔的两个整数N和C

    第二行---第N+1行:i+1行指出了xi的位置

    Output

    * Line 1: One integer: the largest minimum distance

    第一行:一个整数,最大的最小值

    Sample Input

    5 3
    1
    2
    8
    4
    9

    Sample Output

    3

    把牛放在1,4,8这样最小距离是3

    HINT

    Source

    Gold

    题解:

    二分答案,进行判断

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm> 
     4 using namespace std;
     5 const int MAXN=100000+1;
     6 int a[MAXN];
     7 int main(int argc, char *argv[])
     8 {
     9     //freopen("b.in","r",stdin);
    10     //freopen("b.out","w",stdout); 
    11     int n,m,i;
    12     scanf("%d%d",&n,&m);
    13     for(i=1;i<=n;i++)
    14     scanf("%d",&a[i]);
    15     sort(a+1,a+n+1);
    16     int l=0,r=a[n],mid;
    17     while(l<r)
    18     {
    19         mid=(l+r)/2;
    20         long long tot=0,ans=0;
    21         for(i=2;i<=n;i++)
    22         if(tot+a[i]-a[i-1]<=mid) tot=tot+a[i]-a[i-1];
    23         else tot=0,ans++;
    24         if(ans<m-1) r=mid;
    25         else l=mid+1;
    26     }
    27     printf("%d
    ",l);
    28     return 0;
    29 }
  • 相关阅读:
    python机器学习-数据集划分
    python机器学习-数据集的使用
    char类型标识字段
    CharIndex的用法
    临时表和表变量性能差别
    建索引数据优化实例
    公用表达式的结果集不要子查询然后连接查询
    Oracle SQL in 超过1000 的解决方案
    Oracle 11g大数据量表快速增加列
    SQL Server表值函数
  • 原文地址:https://www.cnblogs.com/BeyondW/p/5770647.html
Copyright © 2011-2022 走看看