A. Marketing Scheme
题意:对于一个x,如果({lfloor{xover 2} floor})<= (x) (mod) (a),则满足题意。现在问你能否选出一个a使得[l,r]区间内的所有数都满足题意。
思路:贪心,如果(2l > r),即左端点最优方案能同时满足最大的r,就输出YES,反之则NO。
view code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define endl '
'
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
int main()
{
int kase;
cin>>kase;
while(kase--)
{
ll l = read(), r = read();
ll len = l*2;
if(len>r) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}
return 0;
}
B. Reverse Binary Strings
题意:让你翻转一个01子串的任意子串,问最少多少步能够凑出01交替的串。(01数量各一半)。
思路:注意到,每次翻转都不能改变翻转区间内部的交替性质(如果是11连着翻转了还是11连着),一次翻转只会改变其左右端点两边的交替状态。因此我们可以先统计出需要交换1的数量和需要交换0的位置,然后两两配对(相当于当做区间左右端点翻转),有多少对就多少个,最后加上剩下不能配对的即是答案。
view code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define endl '
'
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
int main()
{
int kase;
cin>>kase;
while(kase--)
{
ll n = read();
string s;
cin>>s;
char pre = (s[0]=='1'?'0':'1');
ll zeros = 0, ones = 0;
rep(i,0,s.size()-1)
{
if(s[i]==pre)
{
if(s[i]=='1') zeros++;
else ones++;
}
pre = s[i];
}
cout<<max(zeros,ones)<<endl;
}
return 0;
}
C. Chef Monocarp
题意:有n个菜,每个菜有个最适时刻t[i],每个时刻只能出一道菜。在一个时刻j出第i道菜的贡献是(|t[i] - j|), 现在要你安排出菜时间使得贡献和最小。
思路:这道题比后面的D题难想一点。。。比赛没想出来,赛后发现是一个dp的问题。
用dp[i][j]表示前i道菜,在j时刻出菜的最优解。
当前这个状态可以由
1.选当前j这个位置,让前i-1道菜从前j-1个位置里面选,然后加上选这个位置的贡献。 (- > dp[i-1][j-1] + |t[i] - j|) 。
2.不选当前j位置,直接从j-1位置转移过来,表示利用前j-1个位置出前i道菜。(->dp[i][j-1])。
然后取两个状态的最小值转移过来。
最后注意一下要先对t数组排序再进行dp。
view code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define endl '
'
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
ll dp[500][500];
ll a[maxn];
int main()
{
int kase;
cin>>kase;
while(kase--)
{
ll n = read();
rep(i,1,n) a[i] = read();
sort(a+1,a+1+n);
rep(i,0,n) rep(j,0,2*n) dp[i][j] = inf;
dp[0][0] = 0;
rep(i,1,n*2) dp[0][i] = 0;
rep(i,1,n) rep(j,1,2*n) dp[i][j] = min(dp[i-1][j-1]+abs(a[i] - j), dp[i][j-1]);
cout<<dp[n][2*n]<<endl;
}
return 0;
}
D. Minimal Height Tree
题意: 给你一个BFS的遍历顺序,且遍历时是按照子节点从小到大排序好访问的。现在问你最小深度是多少。
思路:这个题比前面的好想很多。
贪心:
1.首先我们定义一段连续上升的子串为一个块。因为贪心,如果能放,我们就直接把整个块里面的元素塞到一个父节点下面。
2.从上面可以发现这样会使得每一层的子节点(这一层所有块里面数量的和)尽量的多,而一个子节点又可以连接一个块,所以就每次拿到一个块,看看这一层还有没有位置可以放,可以的话就塞进去,同时这一层的承载量又可以加上当前块的内部个数。若放不下,就到新的一层继续连,同时更新承载量。
view code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define endl '
'
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 2e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0', ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };
ll a[maxn];
vector<ll> block;
int main()
{
int kase;
cin>>kase;
while(kase--)
{
ll n = read();
block.clear();
rep(i,1,n) a[i] = read();
ll len = 0;
a[1] = 1;
rep(i,2,n)
{
if(a[i] > a[i-1]) len++;
else block.pb(len), len = 1;
}
block.pb(len);
ll cur_max = 1;
ll cur_num = 0;
ll nxt_max = 0;
int p = 0;
ll ans = 0;
while(p<block.size())
{
cur_num++;
if(cur_num > cur_max)
{
cur_max = nxt_max;
nxt_max = block[p];
cur_num = 1;
ans++;
}
else nxt_max += block[p];
p++;
}
cout<<ans+1<<endl;
}
return 0;
}