zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 11——A. Co-prime Array(map+vector)

    A. Co-prime Array
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given an array of n elements, you must make it a co-prime array in as few moves as possible.

    In each move you can insert any positive integral number you want not greater than 109 in any place in the array.

    An array is co-prime if any two adjacent numbers of it are co-prime.

    In the number theory, two integers a and b are said to be co-prime if the only positive integer that divides both of them is 1.

    Input

    The first line contains integer n (1 ≤ n ≤ 1000) — the number of elements in the given array.

    The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.

    Output

    Print integer k on the first line — the least number of elements needed to add to the array a to make it co-prime.

    The second line should contain n + k integers aj — the elements of the array a after adding k elements to it. Note that the new array should be co-prime, so any two adjacent values should be co-prime. Also the new array should be got from the original array a by adding kelements to it.

    If there are multiple answers you can print any one of them.

    Example
    input
    3
    2 7 28
    
    output
    1
    2 7 9 28

    给你一个序列在不改变原来相对顺序的情况下插入最少个数使得该序列相邻数均为互质,只要插入的个数最少,答案可以不唯一。本来以为会WA,没想到过了。

    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    inline int gcd(const int &a,const int &b)
    {
    	return b?gcd(b,a%b):a;
    }
    int main (void)
    {
    	int n,i,j,ans,t;	
    	while (cin>>n)
    	{
    		vector<int>vec;
    		map<int,int>pos;
    		for (i=0; i<n; i++)
    		{
    			cin>>t;
    			vec.push_back(t);			
    		}
    		for (i=0; i<n-1; i++)
    		{
    			if(gcd(vec[i],vec[i+1])!=1)
    			{
    				for (j=2; j<=100000000; j++)
    				{
    					if(gcd(vec[i],j)==1&&gcd(vec[i+1],j)==1)//map记录每个位置是否要放入和放入的值
    					{
    						pos[i]=j;
    						break;
    					}
    				}
    			}
    		}
    		cout<<pos.size()<<endl;
    		for (i=0; i<n; i++)
    		{
    			if(pos.find(i)!=pos.end())
    				cout<<vec[i]<<" "<<pos[i];
    			else 
    				cout<<vec[i];
    			if(i==n-1)
    				cout<<endl;
    			else
    				cout<<" ";
    		}
    	}
    	return 0;
    }
  • 相关阅读:
    windows x64 软件约定
    windows 64位 系统非HOOK方式监控进程创建
    win 64 ring0 inline hook
    win 64 Shadow ssdt hook
    win 64 SSDT HOOK
    win 64 文件操作
    win64 驱动内存基本操作
    windbg符号表问题
    Windows 64位驱动编程基础与win64 ssdt
    基础知识
  • 原文地址:https://www.cnblogs.com/Blackops/p/5380418.html
Copyright © 2011-2022 走看看