Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 92632 | Accepted: 28818 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
Hint
线段树的区间更新,区间求和裸题,感觉线段树比树状数组好理解……先照着别的的模版敲一遍再理解,线段树的写法很多人都存在差异,改成自己的比较好用
代码:
#include<iostream> #include<algorithm> #include<cstdlib> #include<sstream> #include<cstring> #include<cstdio> #include<string> #include<deque> #include<stack> #include<cmath> #include<queue> #include<set> #include<map> using namespace std; #define INF 0x3f3f3f3f #define MM(x,y) memset(x,y,sizeof(x)) #define LC(x) (x<<1) #define RC(x) (x<<1)|1 typedef pair<int,int> pii; typedef long long LL; const double PI=acos(-1.0); const int N=100010; struct info { LL l,r,mid; LL sum; LL add; }T[N<<2]; LL arr[N]; void pushup(int k) { T[k].sum=T[LC(k)].sum+T[RC(k)].sum; } void pushdown(int k) { T[LC(k)].add+=T[k].add; T[LC(k)].sum+=T[k].add*(T[LC(k)].r-T[LC(k)].l+1); T[RC(k)].add+=T[k].add; T[RC(k)].sum+=T[k].add*(T[RC(k)].r-T[RC(k)].l+1); T[k].add=0; } void build(int k,LL l,LL r) { T[k].l=l; T[k].r=r; T[k].add=0; T[k].mid=(T[k].l+T[k].r)>>1; if(l==r) T[k].sum=arr[l]; else { build(LC(k),l,T[k].mid); build(RC(k),T[k].mid+1,r); pushup(k); } } void update(LL l,LL r,LL val,int k) { if(r<T[k].l||l>T[k].r) return ; if(l<=T[k].l&&r>=T[k].r) { T[k].add+=val; T[k].sum+=val*(T[k].r-T[k].l+1); } else { if(T[k].add) pushdown(k); update(l,r,val,LC(k)); update(l,r,val,RC(k)); pushup(k); } } LL query(int k,LL l,LL r) { if(l<=T[k].l&&r>=T[k].r) return T[k].sum; if(T[k].add) pushdown(k); if(r<=T[k].mid) return query(LC(k),l,r); else if(l>T[k].mid) return query(RC(k),l,r); else return query(LC(k),l,T[k].mid)+query(RC(k),T[k].mid+1,r); } int main(void) { int tcase,n,i,m; LL l,r,val; char ops[3]; while (~scanf("%d%d",&n,&m)) { MM(arr,0); for (i=1; i<=n; i++) scanf("%lld",&arr[i]); build(1,1,n); for (i=0; i<m; i++) { scanf("%s",ops); if(ops[0]=='Q') { scanf("%lld%lld",&l,&r); printf("%lld ",query(1,l,r)); } else { scanf("%lld%lld%lld",&l,&r,&val); update(l,r,val,1); } } } return 0; }