zoukankan      html  css  js  c++  java
  • POJ——3264Balanced Lineup(RMQ模版水题)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 44112   Accepted: 20713
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    #define INF 0x3f3f3f3f
    #define MM(x) memset(x,0,sizeof(x))
    using namespace std;
    typedef long long LL;
    const int N=50010;
    int n,q;
    int maxm[N][18],minm[N][18];
    void rmq()
    {
    	int i,j;
    	for (j=1; (1<<j)<=n; j++)
    	{
    		for (i=1; i+(1<<j)-1<=n; i++)
    		{
    			minm[i][j]=min(minm[i][j-1],minm[i+(1<<(j-1))][j-1]);
    			maxm[i][j]=max(maxm[i][j-1],maxm[i+(1<<(j-1))][j-1]);
    		}
    	}
    }
    int main(void)
    {
    	int i,j,l,r;
    	while (~scanf("%d%d",&n,&q))
    	{
    		MM(maxm);MM(minm);
    		for (i=1; i<=n; i++)
    		{
    			scanf("%d",&maxm[i][0]);
    			minm[i][0]=maxm[i][0];
    		}
    		rmq();
    		for (i=0; i<q; i++)
    		{
    			scanf("%d%d",&l,&r);
    			int k=(int)log2(r-l+1);
    			int ans=max(maxm[l][k],maxm[r-(1<<k)+1][k])-min(minm[l][k],minm[r-(1<<k)+1][k]);
    			printf("%d
    ",ans);
    		}
    	}
    	return 0;
    }
  • 相关阅读:
    HDU 5791 Two(训练题002 F)
    HDU 5783 Divide the Sequence (训练题002 B)
    关于01背包和完全背包二重循环的顺序(前人之技,后人惊叹)
    关于01背包求第k优解
    最长上升子序列(logN算法)
    ACM课程总结
    Problem F
    关于狄克斯特拉算法(dijkstra)总结
    Problem I
    OBJ文件格式分析工具: objdump, nm,ar
  • 原文地址:https://www.cnblogs.com/Blackops/p/5766338.html
Copyright © 2011-2022 走看看