zoukankan      html  css  js  c++  java
  • POJ——3264Balanced Lineup(RMQ模版水题)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 44112   Accepted: 20713
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    #define INF 0x3f3f3f3f
    #define MM(x) memset(x,0,sizeof(x))
    using namespace std;
    typedef long long LL;
    const int N=50010;
    int n,q;
    int maxm[N][18],minm[N][18];
    void rmq()
    {
    	int i,j;
    	for (j=1; (1<<j)<=n; j++)
    	{
    		for (i=1; i+(1<<j)-1<=n; i++)
    		{
    			minm[i][j]=min(minm[i][j-1],minm[i+(1<<(j-1))][j-1]);
    			maxm[i][j]=max(maxm[i][j-1],maxm[i+(1<<(j-1))][j-1]);
    		}
    	}
    }
    int main(void)
    {
    	int i,j,l,r;
    	while (~scanf("%d%d",&n,&q))
    	{
    		MM(maxm);MM(minm);
    		for (i=1; i<=n; i++)
    		{
    			scanf("%d",&maxm[i][0]);
    			minm[i][0]=maxm[i][0];
    		}
    		rmq();
    		for (i=0; i<q; i++)
    		{
    			scanf("%d%d",&l,&r);
    			int k=(int)log2(r-l+1);
    			int ans=max(maxm[l][k],maxm[r-(1<<k)+1][k])-min(minm[l][k],minm[r-(1<<k)+1][k]);
    			printf("%d
    ",ans);
    		}
    	}
    	return 0;
    }
  • 相关阅读:
    可视化工具之 IGV 使用方法
    SAM格式 及 比对工具之 samtools 使用方法
    比对工具之 BWA 使用方法
    项目一:使用二代测序数据进行基因组组装(局部组装)
    Linux 打包和压缩 方法详解
    Oracle 11G R2 RAC中的scan ip 的用途和基本原理【转】
    ORACLE表空间查询和管理【转】
    MySQL分布式集群之MyCAT(三)rule的分析【转】
    MySQL分布式集群之MyCAT(二)【转】
    linux快速复制大量小文件方法 nc+tar【转】
  • 原文地址:https://www.cnblogs.com/Blackops/p/5766338.html
Copyright © 2011-2022 走看看