zoukankan      html  css  js  c++  java
  • HDU——1213How Many Tables(并查集按秩合并)

    J - How Many Tables
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. Ignatius wants to know how many tables he needs at least. You have to notice that not all the friends know each other, and all the friends do not want to stay with strangers. 

    One important rule for this problem is that if I tell you A knows B, and B knows C, that means A, B, C know each other, so they can stay in one table. 

    For example: If I tell you A knows B, B knows C, and D knows E, so A, B, C can stay in one table, and D, E have to stay in the other one. So Ignatius needs 2 tables at least. 
     

    Input

    The input starts with an integer T(1<=T<=25) which indicate the number of test cases. Then T test cases follow. Each test case starts with two integers N and M(1<=N,M<=1000). N indicates the number of friends, the friends are marked from 1 to N. Then M lines follow. Each line consists of two integers A and B(A!=B), that means friend A and friend B know each other. There will be a blank line between two cases. 
     

    Output

    For each test case, just output how many tables Ignatius needs at least. Do NOT print any blanks. 
     

    Sample Input

    2 5 3 1 2 2 3 4 5 5 1 2 5
     

    Sample Output

    2 4


    会了并查集这题就很简单,按集合元素大小合并即可。

    代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    #define INF 0x3f3f3f3f
    #define MM(x) memset(x,0,sizeof(x))
    using namespace std;
    typedef long long LL;
    const int N=1010;
    int pre[N];
    int ran[N];
    void init()
    {
    	for (int i=0; i<N; i++)
    	{
    		pre[i]=i;
    		ran[i]=1;
    	}
    }
    int find(int n)
    {
    	if(n!=pre[n])
    		return pre[n]=find(pre[n]);
    	return pre[n];
    }
    inline void joint(int a,int b)
    {
    	int fa=find(a),fb=find(b);
    	if(fa!=fb)
    	{
    		if(ran[fa]>ran[fb])
    		{
    			pre[fb]=fa;
    			ran[fa]+=ran[fb];
    			ran[fb]=0;
    		}
    		else
    		{
    			pre[fa]=fb;
    			ran[fb]+=ran[fa];
    			ran[fa]=0;
    		}
    	}
    }
    int main(void)
    {
    	int tcase,i,j,x,y,n,m;
    	scanf("%d",&tcase);
    	while (tcase--)
    	{
    		init();
    		scanf("%d%d",&n,&m);
    		for (i=0; i<m; i++)
    		{
    			scanf("%d%d",&x,&y);
    			joint(x,y);
    		}
    		int ans=0;
    		for (i=1; i<=n; i++)
    		{
    			if(ran[i]!=0)
    				ans++;
    		}
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
  • 相关阅读:
    异步fifo设计(2)
    异步fifo设计(1)
    systemverilog学习(9)assertion
    cordic算法
    Booth除法器设计
    systemverilog学习(8)randomization随机化
    systemverilog学习(7)OOP
    折线法——卡特兰数证明
    【BZOJ 4004】 装备购买(高斯消元+贪心)
    POJ 3322 Bloxorz
  • 原文地址:https://www.cnblogs.com/Blackops/p/5766351.html
Copyright © 2011-2022 走看看