Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.
Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3 1 2 1 1 0 3 1 6 3 5
7 0
5 3 1 1 1 1 1 1 1 5 2 4 1 3
9 4 4
In the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). Not a single of these pairs is suitable for the second query.
In the second sample xor equals 1 for all subarrays of an odd length.
题目链接:CF 617E
这题感觉比一般的莫队要难很多,主要问题就出在转化上,一开始看感觉没办法O(1)进行拓展,后来看了大牛的思路原来是用了一个前缀异或和的数组pre[ ]和一个维护当前区间内异或和个数的数组cnt[ ],用pre[i-1]^pre[j]来表示ai^……aj的异或和,这样才能写出add和del函数。
假设当前已知【L,R】,如果区间增加,假设增加的那个位置的值为pre[x],那么显然pre[x]可以和区间内所有值为 k^pre[x]的数进行两两组合,即会多出cnt[ k^pre[x] ]个组合,此时cnt就可以用到,直接加上cnt[k^pre[x]]即可,然后再更新pre[x](顺序不能反,万一pre[x]^k和pre[x]是相同的,更新前是4,更新后是5,但是只能多出4个组合而不是5个组合);如果区间减小,由于被减掉的那个pre[x]本来可以组合cnt[k^pre[x]]个,因此要减掉这么多个数,但是假如pre[x]=pre[x]^k的话,比如5个0去了一个0变成了4个0,组合数减少了4,因此要先自减1再更新此时的答案
代码:
#include<iostream> #include<algorithm> #include<cstdlib> #include<sstream> #include<cstring> #include<bitset> #include<cstdio> #include<string> #include<deque> #include<stack> #include<cmath> #include<queue> #include<set> #include<map> using namespace std; #define INF 0x3f3f3f3f #define CLR(x,y) memset(x,y,sizeof(x)) #define LC(x) (x<<1) #define RC(x) ((x<<1)+1) #define MID(x,y) ((x+y)>>1) typedef pair<int,int> pii; typedef long long LL; const double PI=acos(-1.0); const int N=1<<20; struct info { int l,r; int b,idd; bool operator<(const info &t)const { if(b==t.b) return r<t.r; return b<t.b; } }; info query[N]; int pre[N]; LL cnt[N]; LL ans[N]; void init() { CLR(pre,0); CLR(cnt,0); CLR(ans,0); } inline void add(const int &val,LL &temp,const int &k) { temp+=cnt[val^k]; ++cnt[val]; } inline void del(const int &val,LL &temp,const int &k) { --cnt[val]; temp-=cnt[val^k];; } int main(void) { int n,m,k,i,j,val; while (~scanf("%d%d%d",&n,&m,&k)) { init(); for (i=1; i<=n; ++i) { scanf("%d",&val); pre[i]=pre[i-1]^val; } int unit=sqrt(n); for (i=0; i<m; ++i) { scanf("%d%d",&query[i].l,&query[i].r); query[i].b=query[i].l/unit; query[i].idd=i; } sort(query,query+m); int L=1,R=0; LL temp=0; cnt[0]=1; for (i=0; i<m; ++i) { while (L>query[i].l) { --L; add(pre[L-1],temp,k); } while (L<query[i].l) { del(pre[L-1],temp,k); ++L; } while (R>query[i].r) { del(pre[R],temp,k); --R; } while (R<query[i].r) { ++R; add(pre[R],temp,k); } ans[query[i].idd]=temp; } for (i=0; i<m; ++i) printf("%I64d ",ans[i]); } return 0; }