zoukankan      html  css  js  c++  java
  • POJ 2533 Longest Ordered Subsequence(LIS模版题)

    Longest Ordered Subsequence
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 47465   Accepted: 21120

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2< ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4

    题目链接:POJ 2533

    LIS模版题,N2和N*logN两种写法

    N2代码:

    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<bitset>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(x,y) memset(x,y,sizeof(x))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e3+10;
    int arr[N],mx[N];
    void init()
    {
        CLR(arr,0);
        CLR(mx,0);
    }
    int main(void)
    {
        int n,i,j,pre_len;
        while (~scanf("%d",&n))
        {
            init();
            for (i=1; i<=n; ++i)
                scanf("%d",&arr[i]);
            mx[1]=1;
            for (i=2; i<=n; ++i)
            {
                pre_len=0;
                for (j=1; j<i; ++j)
                {
                    if(arr[j]<arr[i])//arr[i]可以接到arr[j]后面
                        if(mx[j]>pre_len)//接到一个具有最长LIS的后面。
                            pre_len=mx[j];
                }
                mx[i]=pre_len+1;
            }
            printf("%d
    ",*max_element(mx+1,mx+1+n));
        }
        return 0;
    }
    

    NlogN代码:

    #include<stdio.h>
    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<sstream>
    #include<cstring>
    #include<bitset>
    #include<string>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<queue>
    #include<set>
    #include<map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(x,y) memset(x,y,sizeof(x))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e3+10;
    int arr[N],d[N];
    void init()
    {
        CLR(arr,0);
        CLR(d,0);
    }
    int main(void)
    {
        int n,i,j,mxlen;
        while (~scanf("%d",&n))
        {
            init();
            for (i=1; i<=n; ++i)
                scanf("%d",&arr[i]);
    
            mxlen=1;
            d[mxlen]=arr[mxlen];
    
            for (i=2; i<=n; ++i)
            {
                if(d[mxlen]<arr[i])
                    d[++mxlen]=arr[i];//最好情况一直往后增长
                else
                {
                    int pos=lower_bound(d,d+mxlen,arr[i])-d;//用二分找到一个下界可放置位置
                    d[pos]=arr[i];
                }
            }
            printf("%d
    ",mxlen);
        }
        return 0;
    }
  • 相关阅读:
    AGC007题解
    博弈论学习笔记
    ZROI2019 提高十连测
    男人八题2019
    LOJ 2840「JOISC 2018 Day 4」糖
    CF671D Roads in Yusland
    网络流套路小结
    BZOJ 3729 GTY的游戏
    AGC036C GP 2
    BZOJ 5046 分糖果游戏
  • 原文地址:https://www.cnblogs.com/Blackops/p/5853673.html
Copyright © 2011-2022 走看看