zoukankan      html  css  js  c++  java
  • HDU 1264 Counting Squares(线段树求面积的并)

    Counting Squares

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1885    Accepted Submission(s): 946

    Problem Description
    Your input is a series of rectangles, one per line. Each rectangle is specified as two points(X,Y) that specify the opposite corners of a rectangle. All coordinates will be integers in the range 0 to 100. For example, the line
    5 8 7 10
    specifies the rectangle who's corners are(5,8),(7,8),(7,10),(5,10).
    If drawn on graph paper, that rectangle would cover four squares. Your job is to count the number of unit(i.e.,1*1) squares that are covered by any one of the rectangles given as input. Any square covered by more than one rectangle should only be counted once.
     
    Input
    The input format is a series of lines, each containing 4 integers. Four -1's are used to separate problems, and four -2's are used to end the last problem. Otherwise, the numbers are the x-ycoordinates of two points that are opposite corners of a rectangle.
     
    Output
    Your output should be the number of squares covered by each set of rectangles. Each number should be printed on a separate line.
     
    Sample Input
    5 8 7 10
    6 9 7 8
    6 8 8 11
    -1 -1 -1 -1
    0 0 100 100
    50 75 12 90
    39 42 57 73
    -2 -2 -2 -2
     
    Sample Output
    8
    10000

    题目链接:HDU 1264

    连离散化都不用的水题,有一个坑点就是题目给的两个对角线坐标不一定是左下、右上这样一个顺序,或者也可能是副对角线上的点,需要判断一下

    代码:

    #include <stdio.h>
    #include <bits/stdc++.h>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(arr,val) memset(arr,val,sizeof(arr))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e3+7;
    struct seg
    {
        int l,mid,r;
        int cnt,len;
    };
    struct Line
    {
        int l,r,h,flag;
        bool operator<(const Line &t)const
        {
            return h<t.h;
        }
    };
    seg T[N<<3];
    Line xline[N<<1];
    
    inline void pushup(int k)
    {
        if(T[k].cnt>0)
            T[k].len=T[k].r-T[k].l+1;
        else
        {
            if(T[k].l==T[k].r)
                T[k].len=0;
            else
                T[k].len=T[LC(k)].len+T[RC(k)].len;
        }
    }
    void build(int k,int l,int r)
    {
        T[k].l=l;
        T[k].r=r;
        T[k].mid=MID(l,r);
        T[k].len=T[k].cnt=0;
        if(l==r)
            return ;
        build(LC(k),l,T[k].mid);
        build(RC(k),T[k].mid+1,r);
        pushup(k);
    }
    void update(int k,int l,int r,int flag)
    {
        if(l<=T[k].l&&T[k].r<=r)
        {
            T[k].cnt+=flag;
            pushup(k);
        }
        else
        {
            if(r<=T[k].mid)
                update(LC(k),l,r,flag);
            else if(l>T[k].mid)
                update(RC(k),l,r,flag);
            else
                update(LC(k),l,T[k].mid,flag),update(RC(k),T[k].mid+1,r,flag);
            pushup(k);
        }
    }
    int main(void)
    {
        int n,i;
        int xa,ya,xb,yb;
        int cnt=0;
        while (scanf("%d%d%d%d",&xa,&ya,&xb,&yb))
        {
            if(xa==-1&&xb==-1&&ya==-1&&yb==-1)
            {
                int ans=0;
                build(1,0,N);
                sort(xline,xline+cnt);
                for (i=0; i<cnt-1; ++i)
                {
                    update(1,xline[i].l,xline[i].r-1,xline[i].flag);
                    ans=ans+(xline[i+1].h-xline[i].h)*T[1].len;
                }
                printf("%d
    ",ans);
                cnt=0;
            }
            else if(xa==-2&&xb==-2&&ya==-2&&yb==-2)
            {
                int ans=0;
                build(1,0,N);
                sort(xline,xline+cnt);
                for (i=0; i<cnt-1; ++i)
                {
                    update(1,xline[i].l,xline[i].r-1,xline[i].flag);
                    int dh=(xline[i+1].h-xline[i].h);
                    ans=ans+dh*T[1].len;
                }
                printf("%d
    ",ans);
                cnt=0;
                break;
            }
            else
            {
                if(xa>xb)
                    swap(xa,xb);
                if(ya>yb)
                    swap(ya,yb);
                xline[cnt++]=(Line){xa,xb,ya,1};
                xline[cnt++]=(Line){xa,xb,yb,-1};
            }
    
        }
        return 0;
    }
  • 相关阅读:
    LeetCode 32.使数组唯一的最小增量
    LeetCode 31. 最小的k个数 快速排序+堆排序+二叉搜索树
    LeetCode 30. 最长回文串
    LeetCode 29. 矩形重叠 反向思维
    LeetCode 28. 拼写单词 HashMap赋值给另一个HashMap
    LeetCode 27. 字符串压缩
    Java SSM Spring+Spring MVC+Mybatis整合
    LeetCode 26.岛屿的最大面积 DFS深度遍历问题
    LeetCode 25.最长上升子序列 动态规划
    LeetCode 24.找出数组中出现次数大于二分之一数组长度的数
  • 原文地址:https://www.cnblogs.com/Blackops/p/6028711.html
Copyright © 2011-2022 走看看