zoukankan      html  css  js  c++  java
  • HDU 4358 Boring counting(莫队+DFS序+离散化)

    Boring counting

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others)
    Total Submission(s): 2811    Accepted Submission(s): 827

    Problem Description
    In this problem we consider a rooted tree with N vertices. The vertices are numbered from 1 to N, and vertex 1 represents the root. There are integer weights on each vectice. Your task is to answer a list of queries, for each query, please tell us among all the vertices in the subtree rooted at vertice u, how many different kinds of weights appear exactly K times?
     
    Input
    The first line of the input contains an integer T( T<= 5 ), indicating the number of test cases.
    For each test case, the first line contains two integers N and K, as described above. ( 1<= N <= 105, 1 <= K <= N )
    Then come N integers in the second line, they are the weights of vertice 1 to N. ( 0 <= weight <= 109 )
    For next N-1 lines, each line contains two vertices u and v, which is connected in the tree.
    Next line is a integer Q, representing the number of queries. (1 <= Q <= 105)
    For next Q lines, each with an integer u, as the root of the subtree described above.
     
    Output
    For each test case, output "Case #X:" first, X is the test number. Then output Q lines, each with a number -- the answer to each query.

    Seperate each test case with an empty line.
     
    Sample Input
    1
    3 1
    1 2 2
    1 2
    1 3
    3
    2
    1
    3
     
    Sample Output
    Case #1:
    1
    1
    1

    题目链接:HDU 4358

    把DFS序和莫队算法结合了起来,前两发杯具PE,如果用过DFS序配合线段树的话就大概能知道怎么做了,对于一颗子树的询问显然DFS序是很适合的,然后这样就得到了每一个点所管理的区间[L,R],那莫队移动的时候怎么判断是否遇到了某一个原树上的节点呢?显然用先序遍历的方式来得到某一个点管理的区间,那么L这个点必定是子树树根的位置,若这个点管理的位置是[L,R]那么实际上这个子树根点的值就是arr[L],不过由于每一个区间都是满点的,就映射成val[timeorder]=arr[u],其中u是某次dfs时的起点。

    除此之外还要判断当前减掉的数字是从k减到k-1还是k+1减到k,加上的同理,最后每一个case之间换一行,结尾不换行Orz……另外最近在玩C++11的匿名函数,在sort里随便用下玩

    代码:

    #include <stdio.h>
    #include <bits/stdc++.h>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define CLR(arr,val) memset(arr,val,sizeof(arr))
    #define LC(x) (x<<1)
    #define RC(x) ((x<<1)+1)
    #define MID(x,y) ((x+y)>>1)
    typedef pair<int,int> pii;
    typedef long long LL;
    const double PI=acos(-1.0);
    const int N=1e5+7;
    struct edge
    {
        int to;
        int pre;
    };
    struct info
    {
        int l,r;
        int id,b;
    };
    info Q[N];
    edge E[N];
    int head[N],tot;
    int L[N],R[N],order,val[N];
    int arr[N],cnt[N],ans[N];
    vector<int>vec;
    
    void init()
    {
        CLR(head,-1);
        tot=0;
        CLR(L,0);
        CLR(R,0);
        order=0;
        CLR(val,0);
        CLR(cnt,0);
        vec.clear();
    }
    inline void add(int s,int t)
    {
        E[tot].to=t;
        E[tot].pre=head[s];
        head[s]=tot++;
    }
    void dfs(const int &now,const int &pre)
    {
        L[now]=++order;
        val[order]=arr[now];
        for (int i=head[now]; ~i; i=E[i].pre)
        {
            int v=E[i].to;
            //if(v!=pre)
            dfs(v,now);
        }
        R[now]=order;
    }
    int main(void)
    {
        int tcase,n,k,i,a,b,m,rt;
        scanf("%d",&tcase);
        for (int q=1; q<=tcase; ++q)
        {
            init();
            scanf("%d%d",&n,&k);
            for (i=1; i<=n; ++i)
            {
                scanf("%d",&arr[i]);
                vec.push_back(arr[i]);
            }
            sort(vec.begin(),vec.end());
            vec.erase(unique(vec.begin(),vec.end()),vec.end());
            for (i=1; i<=n; ++i)
                arr[i]=lower_bound(vec.begin(),vec.end(),arr[i])-vec.begin();
            for (i=0; i<n-1; ++i)
            {
                scanf("%d%d",&a,&b);
                add(a,b);
            }
            dfs(1,-1);
            scanf("%d",&m);
            int unit=(int)sqrt(1.0*n);
            for (i=0; i<m; ++i)
            {
                scanf("%d",&rt);
                Q[i].l=L[rt];
                Q[i].r=R[rt];
                Q[i].id=i;
                Q[i].b=Q[i].l/unit;
            }
            sort(Q,Q+m,[&](const info &x,const info &y){return (x.b==y.b&&x.r<y.r)||x.b<y.b;});
            int l=1,r=0,temp=0;
            for (i=0; i<m; ++i)
            {
                while (l<Q[i].l)
                {
                    --cnt[val[l]];
                    if(cnt[val[l]]==k)
                        ++temp;
                    else if(cnt[val[l]]==k-1)
                        --temp;
                    ++l;
                }
                while (l>Q[i].l)
                {
                    --l;
                    ++cnt[val[l]];
                    if(cnt[val[l]]==k)
                        ++temp;
                    else if(cnt[val[l]]==k+1)
                        --temp;
                }
                while (r<Q[i].r)
                {
                    ++r;
                    ++cnt[val[r]];
                    if(cnt[val[r]]==k)
                        ++temp;
                    else if(cnt[val[r]]==k+1)
                        --temp;
                }
                while (r>Q[i].r)
                {
                    --cnt[val[r]];
                    if(cnt[val[r]]==k-1)
                        --temp;
                    else if(cnt[val[r]]==k)
                        ++temp;
                    --r;
                }
                ans[Q[i].id]=temp;
            }
            printf("Case #%d:
    ",q);
            for (i=0; i<m; ++i)
                printf("%d
    ",ans[i]);
            if(q!=tcase)
                putchar('
    ');
        }
        return 0;
    }
  • 相关阅读:
    第12章 项目采购管理
    C# 利用xml动态生成带图标菜单
    C#正则表达式整理备忘
    IE8"开发人员工具"使用详解下
    拖盘控件notifyIcon演示例程
    多列选择框控件checkedListBox演示程序
    树形框treeView演示程序
    错误提示控件errorProvider演示例程
    IE8“开发人员工具”使用详解上
    c#中分割字符串的几种方法
  • 原文地址:https://www.cnblogs.com/Blackops/p/6040686.html
Copyright © 2011-2022 走看看