Problem C. Numbers
| Small input 15 points |
|
|
Large input 35 points |
|
Problem
In this problem, you have to find the last three digits before the decimal point for the number (3 + √5)n.
For example, when n = 5, (3 + √5)5 = 3935.73982... The answer is 935.
For n = 2, (3 + √5)2 = 27.4164079... The answer is 027.
Input
The first line of input gives the number of cases, T. T test cases follow, each on a separate line. Each test case contains one positive integer n.
Output
For each input case, you should output:
Case #X: Ywhere X is the number of the test case and Y is the last three integer digits of the number (3 + √5)n. In case that number has fewer than three integer digits, add leading zeros so that your output contains exactly three digits.
Limits
1 <= T <= 100
Small dataset
2 <= n <= 30
Large dataset
2 <= n <= 2000000000
Sample
题目链接:Problem C. Numbers
挑战编程书上的题目,跟HDU的4565有点像,只是这题a与b固定,要求的是整数部分的最后三位数字,不足补0。
一开始书上的公式看不懂,问了下同学才弄懂,可以参考草稿纸上写的推出$a_n$的公式

按照这个思路可以知道题目中所求的答案就是$2*a_n-1$了
然后构造矩阵去求$a_n$即可

代码:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 2;
int a = 3, b = 5, n, m = 1000;
int mul(int a, int b)
{
int r = 0;
while (b)
{
if (b & 1)
r = (r + a) % m;
a = (a << 1) % m;
b >>= 1;
}
return r;
}
struct Mat
{
int A[N][N];
void zero()
{
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
A[i][j] = 0;
}
void one()
{
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
A[i][j] = (i == j);
}
Mat operator*(Mat b)
{
Mat c;
c.zero();
for (int k = 0; k < N; ++k)
{
for (int i = 0; i < N; ++i)
{
if (A[i][k])
{
for (int j = 0; j < N; ++j)
{
if (b.A[k][j])
c.A[i][j] = (c.A[i][j] + mul(A[i][k], b.A[k][j])) % m;
}
}
}
}
return c;
}
friend Mat operator^(Mat a, int b)
{
Mat r;
r.one();
while (b)
{
if (b & 1)
r = r * a;
a = a * a;
b >>= 1;
}
return r;
}
};
int main(void)
{
while (~scanf("%d", &n))
{
Mat A, B;
A.zero();
B.zero();
A.A[0][0] = 1; A.A[0][1] = 0;
A.A[1][0] = 1; A.A[1][1] = 0;
B.A[0][0] = a; B.A[0][1] = 1;
B.A[1][0] = b; B.A[1][1] = a;
A = A * (B ^ n);
printf("Case #%d: %03d
", q, ((A.A[0][0] << 1) - 1) % m);
}
return 0;
}