zoukankan      html  css  js  c++  java
  • 面试题 08.06. 汉诺塔问题

    面试题 08.06. 汉诺塔问题

    在经典汉诺塔问题中,有 3 根柱子及 N 个不同大小的穿孔圆盘,盘子可以滑入任意一根柱子。一开始,所有盘子自上而下按升序依次套在第一根柱子上(即每一个盘子只能放在更大的盘子上面)。移动圆盘时受到以下限制:
    (1) 每次只能移动一个盘子;
    (2) 盘子只能从柱子顶端滑出移到下一根柱子;
    (3) 盘子只能叠在比它大的盘子上。

    请编写程序,用栈将所有盘子从第一根柱子移到最后一根柱子。

    你需要原地修改栈。

    示例1:

      输入:A = [2, 1, 0], B = [], C = []
      输出:C = [2, 1, 0]
    示例2:

      输入:A = [1, 0], B = [], C = []
      输出:C = [1, 0]

     

    问题描述

    有 A,B,C 三根柱子,A 上面有 n 个盘子,我们想把 A 上面的盘子移动到 C 上,但是要满足以下三个条件:

    •   每次只能移动一个盘子;
    •   盘子只能从柱子顶端滑出移到下一根柱子;
    •   盘子只能叠在比它大的盘子上。

     

    解题思路:递归与分治
    这是一道递归方法的经典题目,乍一想还挺难理清头绪的,我们不妨先从简单的入手。

    假设 n = 1,只有一个盘子,很简单,直接把它从 A 中拿出来,移到 C 上;

    如果 n = 2 呢?这时候我们就要借助 B 了,因为小盘子必须时刻都在大盘子上面,共需要 4 步。

    具体解决办法如下:

    • n = 1 时,直接把盘子从 A 移到 C;
    • n > 1 时,
    1. 先把上面 n - 1 个盘子从 A 移到 B(子问题,递归);
    2. 再将最大的盘子从 A 移到 C;
    3. 再将 B 上 n - 1 个盘子从 B 移到 C(子问题,递归)。

    代码:

    class Solution {
    public:
        void hanota(vector<int>& A, vector<int>& B, vector<int>& C) {
            int n=A.size();
            move(n,A,B,C);
    
        }
        void move(int n,vector<int>&A,vector<int>&B,vector<int>&C){
            if (n==1)
            {
                C.push_back(A.back());
                A.pop_back();
                return;
            }
            move(n-1,A,C,B);// 将A上面n-1个通过C移到B
            C.push_back(A.back());// 将A最后一个移到C
            A.pop_back();       // 这时,A空了
            move(n-1,B,A,C);// 将B上面n-1个通过空的A移到C
        }
    };

     

    代码:

    class Hanoi{
    public:
    
        void move(int n,string from,string buffer,string to){
            if (n==1)
            {
                cout<<"from "<<from<<" to "<<to<<endl;
                return;
            }
            move(n-1,from,to,buffer);
            move(1,from,buffer,to);
            move(n-1,buffer,from,to);
        }
    
    };

     复杂度分析:世界会毁灭吗时间复杂度:O(2n-1)

    一共需要移动的次数。空间复杂度:O(1)。当 n = 64时,也就是有 64 个盘子的时候,如果每秒移动一个盘子,大约需要 11.8×10 

    19秒...

     

    因上求缘,果上努力~~~~ 作者:每天卷学习,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/13562835.html

  • 相关阅读:
    参考Shiro的自定义基于Spring的AOP横切模式
    Spring-@Value获取配置文件内容
    BeanPostProcessor Bean实例的初始化前后的自定义修改
    两台Linux主机之间免密scp复制文件及远程启动关闭Tomcat
    Shiro Realm领域
    test
    Linux 安装Oracle数据库
    Shiro Authorizer授权器
    HDU 1079 Calendar Game (博弈)
    MooFest POJ
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/13562835.html
Copyright © 2011-2022 走看看