zoukankan      html  css  js  c++  java
  • 机器学习第一次作业

    机器学习第一次作业

    1.试设计一个不同于高斯核和Epanechnikov核的核函数。

    2.如果 $mathrm{N}$ 个独立的观测样本 $x_{1}, x_{2}, x_{3}, ldots, x_{N}$ 服从概率密度

        $mathrm{p}(mathrm{x} mid hat{ heta})=frac{1}{sqrt{(2 pi)^{mathrm{p}} mathrm{det}(Sigma)}} cdot exp left[-frac{1}{2}(mathrm{x}-mu)^{mathrm{T}} {sum}^{-1}(mathrm{x}-mu) ight]$,

      试估计$ heta={mu, sum }$ 。

    解:

    1)

        $mathrm{K}(mathrm{X})=exp left(-frac{left(left|mathrm{X}-mathrm{X}_{mathrm{k}} ight| ight)^{2}}{2 sigma^{2}} ight)$    

      其中 $sigma$ 定义学习样本间相似性的特征长度尺度。

    2)

      令:

        $L( heta)=prod limits_{i=1}^{N} Pleft(x_{i} mid heta ight)=left(frac{1}{sqrt{(2 pi)^{p} operatorname{det}(Sigma)}} ight)^{N} exp left[-frac{1}{2} sum limits _{i=1}^{N}left(x_{i}-hat{mu} ight)^{ op} Sigma^{-1}left(x_{i}-hat{mu} ight) ight]$

       则:

        $operatorname{ln} L( heta)=-frac{P N}{2} ln 2 pi-frac{N}{2} ln operatorname{det}(hat{Sigma})-frac{1}{2} sumlimits _{i=1}^{N}left(x_{i}-hat{mu} ight)^{ op} Sigma^{-1}left(x_{i}-hat{mu} ight)$

      由 $frac{partial operatorname{ln} L( heta)}{partial hat{mu}}=0$ 得:

         $sum limits _{i=1}^{N} Sigma^{-1}left(x_{i}-hat{mu} ight)=0$

      由 $frac{partial operatorname{ln} L( heta)}{partial hat{Sigma}}=0$ 得:

        $sum limits _{i=1}^{N}left(x_{i}-hat{mu} ight)left(x_{i}-hat{mu} ight)^{T} Sigma^{-2}-frac{1}{2} sum limits_{i=1}^{N} Sigma^{-1}=0$

      解得:

        $left{egin{array}{l}hat{mu }=frac{1}{N} sum limits _{i=1}^{N} x_{i} \hat{Sigma}=frac{1}{N} sum limits_{i=1}^{N}left(x_{i}-hat{mu} ight)left(x_{i}-mu ight)^{ op}end{array} ight.$

     

     

     

     

     

     

     

     

     

     

    因上求缘,果上努力~~~~ 作者:每天卷学习,转载请注明原文链接:https://www.cnblogs.com/BlairGrowing/p/15383670.html

  • 相关阅读:
    JSOI 2008 火星人prefix
    OI 中的 FFT
    浅谈最大化子矩阵问题
    qq空间答案
    若瑟夫问题
    [颓废] 改某人的WebGL light mapping demo并9xSSAA
    Codeforces Round #402 (Div. 2) C. Dishonest Sellers
    Codeforces Round #402 (Div. 2) D. String Game
    Codeforces Round #401 (Div. 2) E. Hanoi Factory
    Codeforces Round #401 (Div. 2) D. Cloud of Hashtags
  • 原文地址:https://www.cnblogs.com/BlairGrowing/p/15383670.html
Copyright © 2011-2022 走看看