zoukankan      html  css  js  c++  java
  • Grid Search学习

    转自:https://www.cnblogs.com/ysugyl/p/8711205.html

     Grid Search:一种调参手段;穷举搜索:在所有候选的参数选择中,通过循环遍历,尝试每一种可能性,表现最好的参数就是最终的结果。其原理就像是在数组里找最大值。(为什么叫网格搜索?以有两个参数的模型为例,参数a有3种可能,参数b有4种可能,把所有可能性列出来,可以表示成一个3*4的表格,其中每个cell就是一个网格,循环过程就像是在每个网格里遍历、搜索,所以叫grid search)

    1.简单的网格搜索

    from sklearn.datasets import load_iris
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    
    iris = load_iris()
    X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=0)
    print("Size of training set:{} size of testing set:{}".format(X_train.shape[0],X_test.shape[0]))
    
    ####   grid search start
    best_score = 0
    for gamma in [0.001,0.01,0.1,1,10,100]:
        for C in [0.001,0.01,0.1,1,10,100]:
            svm = SVC(gamma=gamma,C=C)#对于每种参数可能的组合,进行一次训练;
            svm.fit(X_train,y_train)
            score = svm.score(X_test,y_test)
            if score > best_score:#找到表现最好的参数
                best_score = score
                best_parameters = {'gamma':gamma,'C':C}
    ####   grid search end
    
    print("Best score:{:.2f}".format(best_score))
    print("Best parameters:{}".format(best_parameters))

     输出:

    Size of training set:112 size of testing set:38
    Best score:0.973684
    Best parameters:{'gamma': 0.001, 'C': 100}

    存在的问题:

    原始数据集划分成训练集和测试集以后,其中测试集除了用作调整参数,也用来测量模型的好坏;这样做导致最终的评分结果比实际效果要好。(因为测试集在调参过程中,送到了模型里,而我们的目的是将训练模型应用在unseen data上);

    解决方法:

    对训练集再进行一次划分,分成训练集和验证集,这样划分的结果就是:原始数据划分为3份,分别为:训练集、验证集和测试集;其中训练集用来模型训练,验证集用来调整参数,而测试集用来衡量模型表现好坏。

    2.使用验证集调整参数

    X_trainval,X_test,y_trainval,y_test = train_test_split(iris.data,iris.target,random_state=0)
    X_train,X_val,y_train,y_val = train_test_split(X_trainval,y_trainval,random_state=1)
    print("Size of training set:{} size of validation set:{} size of teseting set:{}".format(X_train.shape[0],X_val.shape[0],X_test.shape[0]))
    
    best_score = 0.0
    for gamma in [0.001,0.01,0.1,1,10,100]:
        for C in [0.001,0.01,0.1,1,10,100]:
            svm = SVC(gamma=gamma,C=C)
            svm.fit(X_train,y_train)
            score = svm.score(X_val,y_val)
            if score > best_score:
                best_score = score
                best_parameters = {'gamma':gamma,'C':C}
    svm = SVC(**best_parameters) #使用最佳参数,构建新的模型
    svm.fit(X_trainval,y_trainval) #使用训练集和验证集进行训练,more data always results in good performance.
    test_score = svm.score(X_test,y_test) # evaluation模型评估
    print("Best score on validation set:{:.2f}".format(best_score))
    print("Best parameters:{}".format(best_parameters))
    print("Best score on test set:{:.2f}".format(test_score))

    输出:

    Size of training set:84 size of validation set:28 size of teseting set:38
    Best score on validation set:0.96
    Best parameters:{'gamma': 0.001, 'C': 10}
    Best score on test set:0.92

    然而,这种间的的grid search方法,其最终的表现好坏与初始数据的划分结果有很大的关系,为了处理这种情况,我们采用交叉验证的方式来减少偶然性。

    3.使用交叉验证方法调参

    from sklearn.model_selection import cross_val_score
    
    best_score = 0.0
    for gamma in [0.001,0.01,0.1,1,10,100]:
        for C in [0.001,0.01,0.1,1,10,100]:
            svm = SVC(gamma=gamma,C=C)
            scores = cross_val_score(svm,X_trainval,y_trainval,cv=5) #5折交叉验证
            score = scores.mean() #取平均数
            if score > best_score:
                best_score = score
                best_parameters = {"gamma":gamma,"C":C}
    svm = SVC(**best_parameters)
    svm.fit(X_trainval,y_trainval)
    test_score = svm.score(X_test,y_test)
    print("Best score on validation set:{:.2f}".format(best_score))
    print("Best parameters:{}".format(best_parameters))
    print("Score on testing set:{:.2f}".format(test_score))

    输出:

    Best score on validation set:0.97
    Best parameters:{'gamma': 0.01, 'C': 100}
    Score on testing set:0.97

    交叉验证经常与网格搜索进行结合,作为参数评价的一种方法,这种方法叫做grid search with cross validation。

     4.类GridSearchCV综合

    from sklearn.model_selection import GridSearchCV
    
    #把要调整的参数以及其候选值 列出来;
    param_grid = {"gamma":[0.001,0.01,0.1,1,10,100],
                 "C":[0.001,0.01,0.1,1,10,100]}
    print("Parameters:{}".format(param_grid))
    
    grid_search = GridSearchCV(SVC(),param_grid,cv=5) #实例化一个GridSearchCV类
    X_train,X_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=10)
    grid_search.fit(X_train,y_train) #训练,找到最优的参数,同时使用最优的参数实例化一个新的SVC estimator。
    print("Test set score:{:.2f}".format(grid_search.score(X_test,y_test)))
    print("Best parameters:{}".format(grid_search.best_params_))
    print("Best score on train set:{:.2f}".format(grid_search.best_score_))

    输出:

    Parameters:{'gamma': [0.001, 0.01, 0.1, 1, 10, 100], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}
    Test set score:0.97
    Best parameters:{'C': 10, 'gamma': 0.1}
    Best score on train set:0.98

    sklearn设计了一个这样的类GridSearchCV,这个类实现了fit,predict,score等方法,被当做了一个estimator,使用fit方法,该过程中:(1)搜索到最佳参数;(2)实例化了一个最佳参数的estimator;

    5.总结

    Grid Search:一种调优方法,在参数列表中进行穷举搜索,对每种情况进行训练,找到最优的参数;由此可知,这种方法的主要缺点是 比较耗时!

  • 相关阅读:
    lucene建立索引时候的用到的一些文档和目录操作
    MYSQL Cast函数 类型转换
    windows和linux下执行java程序+获取本机IP
    apache lucene 的核心类
    apache lucene 一个最简单的实例
    lucene 索引非txt文档 (pdf word rtf html xml)
    MyISAM & InnoDB
    软件开发者面试百问
    比较lucene各种英文分析器Analyzer
    浅谈Base64编码
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/10012235.html
Copyright © 2011-2022 走看看