zoukankan      html  css  js  c++  java
  • 极大似然估计学习【转载】

    转自:https://blog.csdn.net/z2539329562/article/details/79187967

    https://blog.csdn.net/class_brick/article/details/79724660

    1.用频率估计概率

    2.思想

    极大似然估计可以拆成三个词,分别是“极大”、“似然”、“估计”,分别的意思如下:
    极大:最大的概率
    似然:看起来是这个样子的
    估计:就是这个样子的
    连起来就是,最大的概率看起来是这个样子的那就是这个样子的。

    总结:极大似然估计就是在只有概率的情况下,忽略低概率事件直接将高概率事件认为是真实事件的思想。

    3.离散 

    例1、离散的小球问题:
    箱子里有一定数量的小球,每次随机拿取一个小球,查看颜色以后放回,已知拿到白球的概率p为0.7或者0.3,拿了三次,都不是白球,想要求拿到白球的概率的极大似然估计。


    分析:此处从数学上来讲,想要准确的求出拿到白球的概率是不可能的,所以此处求的是概率的极大似然估计。而这里的有放回的拿取,是高中数学中经典的独立重复事件,可以很简单的分别求出白球概率为0.7和0.3的时候拿三次都不是白球的概率。


    解:
    若拿到白球的概率为0.7,拿三次都不是白球的概率为:
    P_0.7=0.3*0.3*0.3=0.027
    若拿到白球的概率为0.3,拿三次都不是白球的概率为:
    P_0.3=0.7*0.7*0.7=0.343


    P_0.3>P_0.7,可知当前情况下白球概率为0.3的概率大于白球概率为0.7
    综上所述:
    拿到白球的概率的极大似然估计为0.3

    4.连续

    连续状态依然用刚刚拿小球的例子,不过此处白球的概率不再明确为0.7-0.3,此处只知道白球的概率p的范围为0.3<=p<=1。


    例2、连续的小球问题:
    箱子里有一定数量的小球,每次随机拿取一个小球,查看颜色以后放回,已知拿到白球的概率p的范围是[0.3,0.7],拿了三次,都不是白球,想要求拿到白球的概率的极大似然估计。


    分析:与例1相同,想要知道小球的极大似然估计,就是要先求在已知条件下,发生已知事件的概率,然后据此求出小球的极大似然估计。


    解:
    记拿到白球的概率为p,取白球的事件为Y,取到时Y=1,未取到时Y=0,小球颜色不是白色的事件Y重复3次的概率为:
    P(Y=0;p)=(1-p)^3
    欲求p的极大似然估计,即要求P(Y=0;p)的极大值:

    令Q(p)=(1-p)^3

    Q'(p)=-3*(1-p)^2
    令Q'(p)=0
    求得Q的极值点为p=1,且当p<1时,Q'(p)<0,p>1时,Q'(p)<0,可知Q(p)为单调减函数
    可知0.3<=p<=1的条件下,p=0.3时,Q(p)取得最大值。


    综上所述:小球概率的极大似然估计为0.3

    5.总结

     通过极大似然估计的思想、离散形式、连续形式的分析,可以得出极大似然估计的通常解法,总体来说分为以下几步:


    1、得到所要求的极大似然估计的概率p的范围
    2、以p为自变量,推导出当前已知事件的概率函数式Q(p)
    3、求出能使得Q(p)最大的p


    这样便求出了极大似然估计值p 。

  • 相关阅读:
    MySQL百万级数据量分页查询方法及其优化
    Windows10内置Linux子系统初体验
    谈谈区块链(18):以太坊的UTXO
    永久告别mac屏幕涂层脱落
    Cloud Foundry中DEA启动应用实例时环境变量的使用
    jQuery 事件方法大全-超全的总结
    UVA12304-2D Geometry 110 in 1!
    Hbase总结(五)-hbase常识及habse适合什么场景
    Android笔记之 网络http通信
    Mac下安装Redis
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/10304566.html
Copyright © 2011-2022 走看看