zoukankan      html  css  js  c++  java
  • sklearn.svm.LinearSVC文档学习

    https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC

    1.类定义

    class sklearn.svm.LinearSVC(penalty=’l2’, loss=’squared_hinge’, dual=True, 
    tol=0.0001, C=1.0, multi_class=’ovr’, fit_intercept=True, intercept_scaling=1, 
    class_weight=None, verbose=0, random_state=None, max_iter=1000)

     这样会创建一个类,并且类中除了目前创建时的参数还有方法。

    1.1类的方法

    1.2类的属性

     

    2.定义参数说明

    penalty string, ‘l1’ or ‘l2’ (default=’l2’) 指明在惩罚中使用的范数。
     loss string, ‘hinge’ or ‘squared_hinge’ default=’squared_hinge’) 指明损失函数,hinge时SVM中标准损失函数
    dual   bool, (default=True)  选择要解决对偶优化问题还是原始优化问题的算法。当样本数>特征数时最好=False
    tol   可选  float, optional (default=1e-4)  Tolerance for stopping criteria.
    C  可选float, optional (default=1.0)  错误项的惩罚参数C。
    multi_class   string, ‘ovr’ or ‘crammer_singer’  default=’ovr’)  ovr训练n个一对多分类器,cram优化所有类别的联合目标(很少选择,代价太高)
     fit_intercept   可选boolean, optional (default=True)  是否计算截距,如果是False,那么不计算(比如数据已经中心化)
    intercept_scaling  可选 float, optional (default=1) 在使用fit_intercept后使用
    max_iter  int, (default=1000) 要运行的最大迭代次数

    3.

  • 相关阅读:
    HDU多校第六场——HDU6638 Snowy Smile(线段树区间合并)
    java
    java
    java
    java
    java
    python
    appium
    python
    python
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/10444017.html
Copyright © 2011-2022 走看看