zoukankan      html  css  js  c++  java
  • keras实例学习-双向LSTM进行imdb情感分类

    源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py

    keras中文文档

    1.imdb数据集

     数据集来自 IMDB 的 25,000 条电影评论,以情绪(正面/负面)标记。评论已经过预处理,并编码为词索引(整数)的序列表示。为了方便起见,将词按数据集中出现的频率进行索引,例如整数 3 编码数据中第三个最频繁的词。

    这允许快速筛选操作,例如:「只考虑前 10,000 个最常用的词,但排除前 20 个最常见的词」。

    作为惯例,0 不代表特定的单词,而是被用于编码任何未知单词。

    from keras.datasets import imdb
    
    (x_train, y_train), (x_test, y_test) = imdb.load_data(path="imdb.npz",
                                                          num_words=None,
                                                          skip_top=0,
                                                          maxlen=None,
                                                          seed=113,
                                                          start_char=1,
                                                          oov_char=2,
                                                          index_from=3)
    • 返回:

      • 2 个元组:
      • x_train, x_test: 序列的列表,即词索引的列表。如果指定了 num_words 参数,则可能的最大索引值是 num_words-1。如果指定了 maxlen 参数,则可能的最大序列长度为 maxlen
      • y_train, y_test: 整数标签列表 (1 或 0)。
    • 参数:

      • path: 如果你本地没有该数据集 (在 '~/.keras/datasets/' + path),它将被下载到此目录。
      • num_words: 整数或 None。要考虑的最常用的词语。任何不太频繁的词将在序列数据中显示为 oov_char 值。
      • skip_top: 整数。要忽略的最常见的单词(它们将在序列数据中显示为 oov_char 值)。
      • maxlen: 整数。最大序列长度。 任何更长的序列都将被截断。
      • seed: 整数。用于可重现数据混洗的种子。
      • start_char: 整数。序列的开始将用这个字符标记。设置为 1,因为 0 通常作为填充字符。
      • oov_char: 整数。由于 num_words 或 skip_top 限制而被删除的单词将被替换为此字符。
      • index_from: 整数。使用此数以上更高的索引值实际词汇索引的开始。

     //主要还是关注num_words和maxlen两个参数吧,这两个都在我的ibdm_Bilstm.ipynb里试了。

    num_words=2000,意思是只取下标为前2000的,出现次数最频繁的前2000个单词;maxlen=500是针对评论来说的,只取长度≤500的。

    2.数据预处理

    x_train=sequence.pad_sequences(x_train,maxlen=maxlen)
    keras.preprocessing.sequence.pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.0)

    将多个序列截断或补齐为相同长度

    该函数将一个 num_samples 的序列(整数列表)转化为一个 2D Numpy 矩阵,其尺寸为 (num_samples, num_timesteps)。 num_timesteps 要么是给定的 maxlen 参数,要么是最长序列的长度

    比 num_timesteps 短的序列将在末端以 value 值补齐。

    比 num_timesteps 长的序列将会被截断以满足所需要的长度。补齐或截断发生的位置分别由参数 pading 和 truncating 决定。

    向前补齐为默认操作。

    参数

    • sequences: 列表的列表,每一个元素是一个序列。
    • maxlen: 整数,所有序列的最大长度。
    • dtype: 输出序列的类型。 要使用可变长度字符串填充序列,可以使用 object
    • padding: 字符串,'pre' 或 'post' ,在序列的前端补齐还是在后端补齐。
    • truncating: 字符串,'pre' 或 'post' ,移除长度大于 maxlen 的序列的值,要么在序列前端截断,要么在后端。
    • value: 浮点数,表示用来补齐的值。

    返回

    • x: Numpy 矩阵,尺寸为 (len(sequences), maxlen)

    异常

    • ValueError: 如果截断或补齐的值无效,或者序列条目的形状无效。

    //默认补齐和截断都是在序列前端pre的。

    3. Sequential顺序模型

    顺序模型是多个网络层的线性堆叠。

    你可以通过将网络层实例的列表传递给 Sequential 的构造器,来创建一个 Sequential 模型。见

    4. Embedding层

    keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)

     将正整数(索引值)转换为固定尺寸的稠密向量。 例如: [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]。

     该层只能用作模型中的第一层。

    参数

    • input_dim: int > 0。词汇表大小, 即,最大整数 index + 1。
    • output_dim: int >= 0。词向量的维度。
    • embeddings_initializerembeddings 矩阵的初始化方法 (详见 initializers)。默认是均匀分布。
    • embeddings_regularizerembeddings matrix 的正则化方法 (详见 regularizer)。
    • embeddings_constraintembeddings matrix 的约束函数 (详见 constraints)。
    • mask_zero: 是否把 0 看作为一个应该被遮蔽的特殊的 "padding" 值。 这对于可变长的 循环神经网络层 十分有用。 如果设定为 True,那么接下来的所有层都必须支持 masking,否则就会抛出异常。 如果 mask_zero 为 True,作为结果,索引 0 就不能被用于词汇表中 (input_dim 应该与 vocabulary + 1 大小相同)。
    • input_length: 输入序列的长度,当它是固定的时。 如果你需要连接 Flatten 和 Dense 层,则这个参数是必须的 (没有它,dense 层的输出尺寸就无法计算)。

    输入尺寸

    尺寸为 (batch_size, sequence_length) 的 2D 张量。

    输出尺寸

    尺寸为 (batch_size, sequence_length, output_dim) 的 3D 张量。

    5.Bidirectional

    keras.layers.Bidirectional(layer, merge_mode='concat', weights=None)

    RNN 的双向封装器,对序列进行前向和后向计算。

    参数

    • layerRecurrent 实例。
    • merge_mode: 前向和后向 RNN 的输出的结合模式。 为 {'sum', 'mul', 'concat', 'ave', None} 其中之一。 如果是 None,输出不会被结合,而是作为一个列表被返回。

    异常

    • ValueError: 如果参数 merge_mode 非法。

     6.LSTM

    keras.layers.LSTM(units, activation='tanh', recurrent_activation='hard_sigmoid', use_bias=True, kernel_initializer='glorot_uniform', recurrent_initializer='orthogonal', 
    bias_initializer='zeros', unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None,
    recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, implementation=1, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False)

     //这个参数也太多了吧。

    参数

    • units: 正整数,输出空间的维度。(也就是一个里面有多少个size吧)
    • activation: 要使用的激活函数 (详见 activations)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
    • recurrent_activation: 用于循环时间步的激活函数 (详见 activations)。 默认:分段线性近似 sigmoid (hard_sigmoid)。 如果传入 None,则不使用激活函数 (即 线性激活:a(x) = x)。
    • use_bias: 布尔值,该层是否使用偏置向量。
    • kernel_initializerkernel 权值矩阵的初始化器, 用于输入的线性转换 (详见 initializers)。

     给出部分,其中units是必须的。

    model.add(Bidirectional(LSTM(64)))

     7.Dropout

    keras.layers.Dropout(rate, noise_shape=None, seed=None)

    将 Dropout 应用于输入。

    Dropout 包括在训练中每次更新时, 将输入单元的按比率随机设置为 0, 这有助于防止过拟合。

    参数

    • rate: 在 0 和 1 之间浮动。需要丢弃的输入比例。
    • noise_shape: 1D 整数张量, 表示将与输入相乘的二进制 dropout 掩层的形状。 例如,如果你的输入尺寸为 (batch_size, timesteps, features),然后 你希望 dropout 掩层在所有时间步都是一样的, 你可以使用 noise_shape=(batch_size, 1, features)
    • seed: 一个作为随机种子的 Python 整数。

    //这里timesteps应该是可以说是上例中的句子长度10,共进行10个时间步能够将句子读完。

    model.add(Dropout(0.5))

    8.Dense

    keras.layers.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, 
    bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

    常用的全连接层。

    Dense 实现以下操作: output = activation(dot(input, kernel) + bias) 其中 activation 是按逐个元素计算的激活函数,kernel 是由网络层创建的权值矩阵,以及 bias 是其创建的偏置向量 (只在 use_bias 为 True 时才有用)。

    • 注意: 如果该层的输入的秩大于2,那么它首先被展平然后 再计算与 kernel 的点乘。

    参数

    • units: 正整数,输出空间维度。
    • activation: 激活函数 (详见 activations)。 若不指定,则不使用激活函数 (即,「线性」激活: a(x) = x)。
    • use_bias: 布尔值,该层是否使用偏置向量。
    • kernel_initializerkernel 权值矩阵的初始化器 (详见 initializers)。
    • bias_initializer: 偏置向量的初始化器 (see initializers).
    • kernel_regularizer: 运用到 kernel 权值矩阵的正则化函数 (详见 regularizer)。
    • bias_regularizer: 运用到偏置向的的正则化函数 (详见 regularizer)。
    • activity_regularizer: 运用到层的输出的正则化函数 (它的 "activation")。 (详见 regularizer)。
    • kernel_constraint: 运用到 kernel 权值矩阵的约束函数 (详见 constraints)。
    • bias_constraint: 运用到偏置向量的约束函数 (详见 constraints)。

    输入尺寸

    nD 张量,尺寸: (batch_size, ..., input_dim)。 最常见的情况是一个尺寸为 (batch_size, input_dim)的 2D 输入。

    输出尺寸

    nD 张量,尺寸: (batch_size, ..., units)。 例如,对于尺寸为 (batch_size, input_dim) 的 2D 输入, 输出的尺寸为 (batch_size, units)

    //但是实际上,参数里并没有input_dim这个参数,为什么在应用时会有呢?如下: //运行是没有问题的。

    model = Sequential()
    model.add(Dense(32, input_shape=(16,)))
    # 现在模型就会以尺寸为 (*, 16) 的数组作为输入,
    # 其输出数组的尺寸为 (*, 32)
    
    # 在第一层之后,你就不再需要指定输入的尺寸了:
    model.add(Dense(32))
  • 相关阅读:
    TensorFlow进行简单的图像处理
    Python Numpy
    Python描述性统计
    对文件和文件夹操作的简单函数
    Tensorflow最简单的图像搭建识别系统
    Python大数据处理模块Pandas
    redis 小结
    datatable 和list 互转
    List集合去重的一种方法
    C#中TransactionScope的使用方法和原理
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/10669837.html
Copyright © 2011-2022 走看看